Step |
Hyp |
Ref |
Expression |
1 |
|
ipcl.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ipcl.7 |
|- P = ( .iOLD ` U ) |
3 |
1 2
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
4 |
3
|
absvalsqd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( abs ` ( A P B ) ) ^ 2 ) = ( ( A P B ) x. ( * ` ( A P B ) ) ) ) |
5 |
1 2
|
dipcj |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( A P B ) ) = ( B P A ) ) |
6 |
5
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) x. ( * ` ( A P B ) ) ) = ( ( A P B ) x. ( B P A ) ) ) |
7 |
4 6
|
eqtr2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) x. ( B P A ) ) = ( ( abs ` ( A P B ) ) ^ 2 ) ) |