Step |
Hyp |
Ref |
Expression |
1 |
|
ipcl.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ipcl.7 |
|- P = ( .iOLD ` U ) |
3 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
4 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
5 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
6 |
1 3 4 5 2
|
ipval |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) ) |
7 |
|
fzfid |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 ... 4 ) e. Fin ) |
8 |
|
ax-icn |
|- _i e. CC |
9 |
|
elfznn |
|- ( k e. ( 1 ... 4 ) -> k e. NN ) |
10 |
9
|
nnnn0d |
|- ( k e. ( 1 ... 4 ) -> k e. NN0 ) |
11 |
|
expcl |
|- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
12 |
8 10 11
|
sylancr |
|- ( k e. ( 1 ... 4 ) -> ( _i ^ k ) e. CC ) |
13 |
12
|
adantl |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( _i ^ k ) e. CC ) |
14 |
1 3 4 5 2
|
ipval2lem4 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ ( _i ^ k ) e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
15 |
12 14
|
sylan2 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
16 |
13 15
|
mulcld |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) |
17 |
7 16
|
fsumcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) |
18 |
|
4cn |
|- 4 e. CC |
19 |
|
4ne0 |
|- 4 =/= 0 |
20 |
|
divcl |
|- ( ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC /\ 4 e. CC /\ 4 =/= 0 ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
21 |
18 19 20
|
mp3an23 |
|- ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
22 |
17 21
|
syl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
23 |
6 22
|
eqeltrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |