| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipcl.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
ipcl.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 3 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 4 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 5 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
| 6 |
1 3 4 5 2
|
ipval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) = ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ) |
| 7 |
|
fzfid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 1 ... 4 ) ∈ Fin ) |
| 8 |
|
ax-icn |
⊢ i ∈ ℂ |
| 9 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 4 ) → 𝑘 ∈ ℕ ) |
| 10 |
9
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 1 ... 4 ) → 𝑘 ∈ ℕ0 ) |
| 11 |
|
expcl |
⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 12 |
8 10 11
|
sylancr |
⊢ ( 𝑘 ∈ ( 1 ... 4 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 14 |
1 3 4 5 2
|
ipval2lem4 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( i ↑ 𝑘 ) ∈ ℂ ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 15 |
12 14
|
sylan2 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 16 |
13 15
|
mulcld |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ ) |
| 17 |
7 16
|
fsumcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ ) |
| 18 |
|
4cn |
⊢ 4 ∈ ℂ |
| 19 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 20 |
|
divcl |
⊢ ( ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0 ) → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) |
| 21 |
18 19 20
|
mp3an23 |
⊢ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) |
| 22 |
17 21
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) |
| 23 |
6 22
|
eqeltrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |