| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dipfval.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
dipfval.2 |
|- G = ( +v ` U ) |
| 3 |
|
dipfval.4 |
|- S = ( .sOLD ` U ) |
| 4 |
|
dipfval.6 |
|- N = ( normCV ` U ) |
| 5 |
|
dipfval.7 |
|- P = ( .iOLD ` U ) |
| 6 |
1 2 3 4 5
|
dipfval |
|- ( U e. NrmCVec -> P = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| 7 |
6
|
oveqd |
|- ( U e. NrmCVec -> ( A P B ) = ( A ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) B ) ) |
| 8 |
|
fvoveq1 |
|- ( x = A -> ( N ` ( x G ( ( _i ^ k ) S y ) ) ) = ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ) |
| 9 |
8
|
oveq1d |
|- ( x = A -> ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) |
| 10 |
9
|
oveq2d |
|- ( x = A -> ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
| 11 |
10
|
sumeq2sdv |
|- ( x = A -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
| 12 |
11
|
oveq1d |
|- ( x = A -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) |
| 13 |
|
oveq2 |
|- ( y = B -> ( ( _i ^ k ) S y ) = ( ( _i ^ k ) S B ) ) |
| 14 |
13
|
oveq2d |
|- ( y = B -> ( A G ( ( _i ^ k ) S y ) ) = ( A G ( ( _i ^ k ) S B ) ) ) |
| 15 |
14
|
fveq2d |
|- ( y = B -> ( N ` ( A G ( ( _i ^ k ) S y ) ) ) = ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ) |
| 16 |
15
|
oveq1d |
|- ( y = B -> ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) |
| 17 |
16
|
oveq2d |
|- ( y = B -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) ) |
| 18 |
17
|
sumeq2sdv |
|- ( y = B -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) ) |
| 19 |
18
|
oveq1d |
|- ( y = B -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 20 |
|
eqid |
|- ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) |
| 21 |
|
ovex |
|- ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) e. _V |
| 22 |
12 19 20 21
|
ovmpo |
|- ( ( A e. X /\ B e. X ) -> ( A ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 23 |
7 22
|
sylan9eq |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 24 |
23
|
3impb |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |