Metamath Proof Explorer


Theorem ipipcj

Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipcl.1 X=BaseSetU
ipcl.7 P=𝑖OLDU
Assertion ipipcj UNrmCVecAXBXAPBBPA=APB2

Proof

Step Hyp Ref Expression
1 ipcl.1 X=BaseSetU
2 ipcl.7 P=𝑖OLDU
3 1 2 dipcl UNrmCVecAXBXAPB
4 3 absvalsqd UNrmCVecAXBXAPB2=APBAPB
5 1 2 dipcj UNrmCVecAXBXAPB=BPA
6 5 oveq2d UNrmCVecAXBXAPBAPB=APBBPA
7 4 6 eqtr2d UNrmCVecAXBXAPBBPA=APB2