Metamath Proof Explorer


Theorem diporthcom

Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ipcl.1 X=BaseSetU
ipcl.7 P=𝑖OLDU
Assertion diporthcom UNrmCVecAXBXAPB=0BPA=0

Proof

Step Hyp Ref Expression
1 ipcl.1 X=BaseSetU
2 ipcl.7 P=𝑖OLDU
3 fveq2 APB=0APB=0
4 cj0 0=0
5 3 4 eqtrdi APB=0APB=0
6 1 2 dipcj UNrmCVecAXBXAPB=BPA
7 6 eqeq1d UNrmCVecAXBXAPB=0BPA=0
8 5 7 imbitrid UNrmCVecAXBXAPB=0BPA=0
9 fveq2 BPA=0BPA=0
10 9 4 eqtrdi BPA=0BPA=0
11 1 2 dipcj UNrmCVecBXAXBPA=APB
12 11 3com23 UNrmCVecAXBXBPA=APB
13 12 eqeq1d UNrmCVecAXBXBPA=0APB=0
14 10 13 imbitrid UNrmCVecAXBXBPA=0APB=0
15 8 14 impbid UNrmCVecAXBXAPB=0BPA=0