Metamath Proof Explorer


Theorem dip0r

Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dip0r.1 X=BaseSetU
dip0r.5 Z=0vecU
dip0r.7 P=𝑖OLDU
Assertion dip0r UNrmCVecAXAPZ=0

Proof

Step Hyp Ref Expression
1 dip0r.1 X=BaseSetU
2 dip0r.5 Z=0vecU
3 dip0r.7 P=𝑖OLDU
4 1 2 nvzcl UNrmCVecZX
5 4 adantr UNrmCVecAXZX
6 eqid +vU=+vU
7 eqid 𝑠OLDU=𝑠OLDU
8 eqid normCVU=normCVU
9 1 6 7 8 3 ipval2 UNrmCVecAXZXAPZ=normCVUA+vUZ2-normCVUA+vU-1𝑠OLDUZ2+inormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ24
10 5 9 mpd3an3 UNrmCVecAXAPZ=normCVUA+vUZ2-normCVUA+vU-1𝑠OLDUZ2+inormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ24
11 neg1cn 1
12 7 2 nvsz UNrmCVec1-1𝑠OLDUZ=Z
13 11 12 mpan2 UNrmCVec-1𝑠OLDUZ=Z
14 13 adantr UNrmCVecAX-1𝑠OLDUZ=Z
15 14 oveq2d UNrmCVecAXA+vU-1𝑠OLDUZ=A+vUZ
16 15 fveq2d UNrmCVecAXnormCVUA+vU-1𝑠OLDUZ=normCVUA+vUZ
17 16 oveq1d UNrmCVecAXnormCVUA+vU-1𝑠OLDUZ2=normCVUA+vUZ2
18 17 oveq2d UNrmCVecAXnormCVUA+vUZ2normCVUA+vU-1𝑠OLDUZ2=normCVUA+vUZ2normCVUA+vUZ2
19 1 6 7 8 3 ipval2lem3 UNrmCVecAXZXnormCVUA+vUZ2
20 5 19 mpd3an3 UNrmCVecAXnormCVUA+vUZ2
21 20 recnd UNrmCVecAXnormCVUA+vUZ2
22 21 subidd UNrmCVecAXnormCVUA+vUZ2normCVUA+vUZ2=0
23 18 22 eqtrd UNrmCVecAXnormCVUA+vUZ2normCVUA+vU-1𝑠OLDUZ2=0
24 negicn i
25 7 2 nvsz UNrmCVecii𝑠OLDUZ=Z
26 24 25 mpan2 UNrmCVeci𝑠OLDUZ=Z
27 ax-icn i
28 7 2 nvsz UNrmCVecii𝑠OLDUZ=Z
29 27 28 mpan2 UNrmCVeci𝑠OLDUZ=Z
30 26 29 eqtr4d UNrmCVeci𝑠OLDUZ=i𝑠OLDUZ
31 30 adantr UNrmCVecAXi𝑠OLDUZ=i𝑠OLDUZ
32 31 oveq2d UNrmCVecAXA+vUi𝑠OLDUZ=A+vUi𝑠OLDUZ
33 32 fveq2d UNrmCVecAXnormCVUA+vUi𝑠OLDUZ=normCVUA+vUi𝑠OLDUZ
34 33 oveq1d UNrmCVecAXnormCVUA+vUi𝑠OLDUZ2=normCVUA+vUi𝑠OLDUZ2
35 34 oveq2d UNrmCVecAXnormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ2=normCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ2
36 1 6 7 8 3 ipval2lem4 UNrmCVecAXZXinormCVUA+vUi𝑠OLDUZ2
37 27 36 mpan2 UNrmCVecAXZXnormCVUA+vUi𝑠OLDUZ2
38 5 37 mpd3an3 UNrmCVecAXnormCVUA+vUi𝑠OLDUZ2
39 38 subidd UNrmCVecAXnormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ2=0
40 35 39 eqtrd UNrmCVecAXnormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ2=0
41 40 oveq2d UNrmCVecAXinormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ2=i0
42 23 41 oveq12d UNrmCVecAXnormCVUA+vUZ2-normCVUA+vU-1𝑠OLDUZ2+inormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ2=0+i0
43 it0e0 i0=0
44 43 oveq2i 0+i0=0+0
45 00id 0+0=0
46 44 45 eqtri 0+i0=0
47 42 46 eqtrdi UNrmCVecAXnormCVUA+vUZ2-normCVUA+vU-1𝑠OLDUZ2+inormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ2=0
48 47 oveq1d UNrmCVecAXnormCVUA+vUZ2-normCVUA+vU-1𝑠OLDUZ2+inormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ24=04
49 4cn 4
50 4ne0 40
51 49 50 div0i 04=0
52 48 51 eqtrdi UNrmCVecAXnormCVUA+vUZ2-normCVUA+vU-1𝑠OLDUZ2+inormCVUA+vUi𝑠OLDUZ2normCVUA+vUi𝑠OLDUZ24=0
53 10 52 eqtrd UNrmCVecAXAPZ=0