Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dip0r.1 | |
|
dip0r.5 | |
||
dip0r.7 | |
||
Assertion | dip0r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dip0r.1 | |
|
2 | dip0r.5 | |
|
3 | dip0r.7 | |
|
4 | 1 2 | nvzcl | |
5 | 4 | adantr | |
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 6 7 8 3 | ipval2 | |
10 | 5 9 | mpd3an3 | |
11 | neg1cn | |
|
12 | 7 2 | nvsz | |
13 | 11 12 | mpan2 | |
14 | 13 | adantr | |
15 | 14 | oveq2d | |
16 | 15 | fveq2d | |
17 | 16 | oveq1d | |
18 | 17 | oveq2d | |
19 | 1 6 7 8 3 | ipval2lem3 | |
20 | 5 19 | mpd3an3 | |
21 | 20 | recnd | |
22 | 21 | subidd | |
23 | 18 22 | eqtrd | |
24 | negicn | |
|
25 | 7 2 | nvsz | |
26 | 24 25 | mpan2 | |
27 | ax-icn | |
|
28 | 7 2 | nvsz | |
29 | 27 28 | mpan2 | |
30 | 26 29 | eqtr4d | |
31 | 30 | adantr | |
32 | 31 | oveq2d | |
33 | 32 | fveq2d | |
34 | 33 | oveq1d | |
35 | 34 | oveq2d | |
36 | 1 6 7 8 3 | ipval2lem4 | |
37 | 27 36 | mpan2 | |
38 | 5 37 | mpd3an3 | |
39 | 38 | subidd | |
40 | 35 39 | eqtrd | |
41 | 40 | oveq2d | |
42 | 23 41 | oveq12d | |
43 | it0e0 | |
|
44 | 43 | oveq2i | |
45 | 00id | |
|
46 | 44 45 | eqtri | |
47 | 42 46 | eqtrdi | |
48 | 47 | oveq1d | |
49 | 4cn | |
|
50 | 4ne0 | |
|
51 | 49 50 | div0i | |
52 | 48 51 | eqtrdi | |
53 | 10 52 | eqtrd | |