Metamath Proof Explorer


Theorem ipval2

Description: Expansion of the inner product value ipval . (Contributed by NM, 31-Jan-2007) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X=BaseSetU
dipfval.2 G=+vU
dipfval.4 S=𝑠OLDU
dipfval.6 N=normCVU
dipfval.7 P=𝑖OLDU
Assertion ipval2 UNrmCVecAXBXAPB=NAGB2-NAG-1SB2+iNAGiSB2NAGiSB24

Proof

Step Hyp Ref Expression
1 dipfval.1 X=BaseSetU
2 dipfval.2 G=+vU
3 dipfval.4 S=𝑠OLDU
4 dipfval.6 N=normCVU
5 dipfval.7 P=𝑖OLDU
6 1 2 3 4 5 ipval UNrmCVecAXBXAPB=k=14ikNAGikSB24
7 ax-icn i
8 1 2 3 4 5 ipval2lem4 UNrmCVecAXBXiNAGiSB2
9 7 8 mpan2 UNrmCVecAXBXNAGiSB2
10 mulcl iNAGiSB2iNAGiSB2
11 7 9 10 sylancr UNrmCVecAXBXiNAGiSB2
12 neg1cn 1
13 1 2 3 4 5 ipval2lem4 UNrmCVecAXBX1NAG-1SB2
14 12 13 mpan2 UNrmCVecAXBXNAG-1SB2
15 11 14 subcld UNrmCVecAXBXiNAGiSB2NAG-1SB2
16 negicn i
17 1 2 3 4 5 ipval2lem4 UNrmCVecAXBXiNAGiSB2
18 16 17 mpan2 UNrmCVecAXBXNAGiSB2
19 mulcl iNAGiSB2iNAGiSB2
20 7 18 19 sylancr UNrmCVecAXBXiNAGiSB2
21 15 20 negsubd UNrmCVecAXBXiNAGiSB2-NAG-1SB2+iNAGiSB2=iNAGiSB2-NAG-1SB2-iNAGiSB2
22 14 mulm1d UNrmCVecAXBX-1NAG-1SB2=NAG-1SB2
23 22 oveq2d UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2=iNAGiSB2+NAG-1SB2
24 11 14 negsubd UNrmCVecAXBXiNAGiSB2+NAG-1SB2=iNAGiSB2NAG-1SB2
25 23 24 eqtrd UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2=iNAGiSB2NAG-1SB2
26 mulneg1 iNAGiSB2iNAGiSB2=iNAGiSB2
27 7 18 26 sylancr UNrmCVecAXBXiNAGiSB2=iNAGiSB2
28 25 27 oveq12d UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2+iNAGiSB2=iNAGiSB2-NAG-1SB2+iNAGiSB2
29 subdi iNAGiSB2NAGiSB2iNAGiSB2NAGiSB2=iNAGiSB2iNAGiSB2
30 7 29 mp3an1 NAGiSB2NAGiSB2iNAGiSB2NAGiSB2=iNAGiSB2iNAGiSB2
31 9 18 30 syl2anc UNrmCVecAXBXiNAGiSB2NAGiSB2=iNAGiSB2iNAGiSB2
32 31 oveq1d UNrmCVecAXBXiNAGiSB2NAGiSB2NAG-1SB2=iNAGiSB2-iNAGiSB2-NAG-1SB2
33 11 20 14 sub32d UNrmCVecAXBXiNAGiSB2-iNAGiSB2-NAG-1SB2=iNAGiSB2-NAG-1SB2-iNAGiSB2
34 32 33 eqtrd UNrmCVecAXBXiNAGiSB2NAGiSB2NAG-1SB2=iNAGiSB2-NAG-1SB2-iNAGiSB2
35 21 28 34 3eqtr4d UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2+iNAGiSB2=iNAGiSB2NAGiSB2NAG-1SB2
36 1 3 nvsid UNrmCVecBX1SB=B
37 36 oveq2d UNrmCVecBXAG1SB=AGB
38 37 fveq2d UNrmCVecBXNAG1SB=NAGB
39 38 oveq1d UNrmCVecBXNAG1SB2=NAGB2
40 39 3adant2 UNrmCVecAXBXNAG1SB2=NAGB2
41 40 oveq2d UNrmCVecAXBX1NAG1SB2=1NAGB2
42 1 2 3 4 5 ipval2lem3 UNrmCVecAXBXNAGB2
43 42 recnd UNrmCVecAXBXNAGB2
44 43 mullidd UNrmCVecAXBX1NAGB2=NAGB2
45 41 44 eqtrd UNrmCVecAXBX1NAG1SB2=NAGB2
46 35 45 oveq12d UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2+iNAGiSB2+1NAG1SB2=iNAGiSB2NAGiSB2-NAG-1SB2+NAGB2
47 nnuz =1
48 df-4 4=3+1
49 oveq2 k=4ik=i4
50 i4 i4=1
51 49 50 eqtrdi k=4ik=1
52 51 oveq1d k=4ikSB=1SB
53 52 oveq2d k=4AGikSB=AG1SB
54 53 fveq2d k=4NAGikSB=NAG1SB
55 54 oveq1d k=4NAGikSB2=NAG1SB2
56 51 55 oveq12d k=4ikNAGikSB2=1NAG1SB2
57 nnnn0 kk0
58 expcl ik0ik
59 7 57 58 sylancr kik
60 59 adantl UNrmCVecAXBXkik
61 1 2 3 4 5 ipval2lem4 UNrmCVecAXBXikNAGikSB2
62 59 61 sylan2 UNrmCVecAXBXkNAGikSB2
63 60 62 mulcld UNrmCVecAXBXkikNAGikSB2
64 df-3 3=2+1
65 oveq2 k=3ik=i3
66 i3 i3=i
67 65 66 eqtrdi k=3ik=i
68 67 oveq1d k=3ikSB=iSB
69 68 oveq2d k=3AGikSB=AGiSB
70 69 fveq2d k=3NAGikSB=NAGiSB
71 70 oveq1d k=3NAGikSB2=NAGiSB2
72 67 71 oveq12d k=3ikNAGikSB2=iNAGiSB2
73 df-2 2=1+1
74 oveq2 k=2ik=i2
75 i2 i2=1
76 74 75 eqtrdi k=2ik=1
77 76 oveq1d k=2ikSB=-1SB
78 77 oveq2d k=2AGikSB=AG-1SB
79 78 fveq2d k=2NAGikSB=NAG-1SB
80 79 oveq1d k=2NAGikSB2=NAG-1SB2
81 76 80 oveq12d k=2ikNAGikSB2=-1NAG-1SB2
82 1z 1
83 oveq2 k=1ik=i1
84 exp1 ii1=i
85 7 84 ax-mp i1=i
86 83 85 eqtrdi k=1ik=i
87 86 oveq1d k=1ikSB=iSB
88 87 oveq2d k=1AGikSB=AGiSB
89 88 fveq2d k=1NAGikSB=NAGiSB
90 89 oveq1d k=1NAGikSB2=NAGiSB2
91 86 90 oveq12d k=1ikNAGikSB2=iNAGiSB2
92 91 fsum1 1iNAGiSB2k=11ikNAGikSB2=iNAGiSB2
93 82 11 92 sylancr UNrmCVecAXBXk=11ikNAGikSB2=iNAGiSB2
94 1nn 1
95 93 94 jctil UNrmCVecAXBX1k=11ikNAGikSB2=iNAGiSB2
96 eqidd UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2=iNAGiSB2+-1NAG-1SB2
97 47 73 81 63 95 96 fsump1i UNrmCVecAXBX2k=12ikNAGikSB2=iNAGiSB2+-1NAG-1SB2
98 eqidd UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2+iNAGiSB2=iNAGiSB2+-1NAG-1SB2+iNAGiSB2
99 47 64 72 63 97 98 fsump1i UNrmCVecAXBX3k=13ikNAGikSB2=iNAGiSB2+-1NAG-1SB2+iNAGiSB2
100 eqidd UNrmCVecAXBXiNAGiSB2+-1NAG-1SB2+iNAGiSB2+1NAG1SB2=iNAGiSB2+-1NAG-1SB2+iNAGiSB2+1NAG1SB2
101 47 48 56 63 99 100 fsump1i UNrmCVecAXBX4k=14ikNAGikSB2=iNAGiSB2+-1NAG-1SB2+iNAGiSB2+1NAG1SB2
102 101 simprd UNrmCVecAXBXk=14ikNAGikSB2=iNAGiSB2+-1NAG-1SB2+iNAGiSB2+1NAG1SB2
103 43 14 subcld UNrmCVecAXBXNAGB2NAG-1SB2
104 9 18 subcld UNrmCVecAXBXNAGiSB2NAGiSB2
105 mulcl iNAGiSB2NAGiSB2iNAGiSB2NAGiSB2
106 7 104 105 sylancr UNrmCVecAXBXiNAGiSB2NAGiSB2
107 103 106 addcomd UNrmCVecAXBXNAGB2-NAG-1SB2+iNAGiSB2NAGiSB2=iNAGiSB2NAGiSB2+NAGB2-NAG-1SB2
108 106 14 43 subadd23d UNrmCVecAXBXiNAGiSB2NAGiSB2-NAG-1SB2+NAGB2=iNAGiSB2NAGiSB2+NAGB2-NAG-1SB2
109 107 108 eqtr4d UNrmCVecAXBXNAGB2-NAG-1SB2+iNAGiSB2NAGiSB2=iNAGiSB2NAGiSB2-NAG-1SB2+NAGB2
110 46 102 109 3eqtr4d UNrmCVecAXBXk=14ikNAGikSB2=NAGB2-NAG-1SB2+iNAGiSB2NAGiSB2
111 110 oveq1d UNrmCVecAXBXk=14ikNAGikSB24=NAGB2-NAG-1SB2+iNAGiSB2NAGiSB24
112 6 111 eqtrd UNrmCVecAXBXAPB=NAGB2-NAG-1SB2+iNAGiSB2NAGiSB24