| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dipfval.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
dipfval.2 |
|- G = ( +v ` U ) |
| 3 |
|
dipfval.4 |
|- S = ( .sOLD ` U ) |
| 4 |
|
dipfval.6 |
|- N = ( normCV ` U ) |
| 5 |
|
dipfval.7 |
|- P = ( .iOLD ` U ) |
| 6 |
1 2 3 4 5
|
ipval |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
1 2 3 4 5
|
ipval2lem4 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ _i e. CC ) -> ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC ) |
| 9 |
7 8
|
mpan2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC ) |
| 10 |
|
mulcl |
|- ( ( _i e. CC /\ ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 11 |
7 9 10
|
sylancr |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 12 |
|
neg1cn |
|- -u 1 e. CC |
| 13 |
1 2 3 4 5
|
ipval2lem4 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u 1 e. CC ) -> ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) e. CC ) |
| 14 |
12 13
|
mpan2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) e. CC ) |
| 15 |
11 14
|
subcld |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) e. CC ) |
| 16 |
|
negicn |
|- -u _i e. CC |
| 17 |
1 2 3 4 5
|
ipval2lem4 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u _i e. CC ) -> ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) |
| 18 |
16 17
|
mpan2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) |
| 19 |
|
mulcl |
|- ( ( _i e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 20 |
7 18 19
|
sylancr |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 21 |
15 20
|
negsubd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 22 |
14
|
mulm1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = -u ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
| 23 |
22
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + -u ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 24 |
11 14
|
negsubd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + -u ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 25 |
23 24
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 26 |
|
mulneg1 |
|- ( ( _i e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) = -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
| 27 |
7 18 26
|
sylancr |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) = -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
| 28 |
25 27
|
oveq12d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + -u ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 29 |
|
subdi |
|- ( ( _i e. CC /\ ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 30 |
7 29
|
mp3an1 |
|- ( ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) e. CC /\ ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) e. CC ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 31 |
9 18 30
|
syl2anc |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 32 |
31
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 33 |
11 20 14
|
sub32d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 34 |
32 33
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) - ( _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 35 |
21 28 34
|
3eqtr4d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 36 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
| 37 |
36
|
oveq2d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( A G ( 1 S B ) ) = ( A G B ) ) |
| 38 |
37
|
fveq2d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( A G ( 1 S B ) ) ) = ( N ` ( A G B ) ) ) |
| 39 |
38
|
oveq1d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 40 |
39
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 41 |
40
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) = ( 1 x. ( ( N ` ( A G B ) ) ^ 2 ) ) ) |
| 42 |
1 2 3 4 5
|
ipval2lem3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. RR ) |
| 43 |
42
|
recnd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. CC ) |
| 44 |
43
|
mullidd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( ( N ` ( A G B ) ) ^ 2 ) ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 45 |
41 44
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
| 46 |
35 45
|
oveq12d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( ( N ` ( A G B ) ) ^ 2 ) ) ) |
| 47 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 48 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 49 |
|
oveq2 |
|- ( k = 4 -> ( _i ^ k ) = ( _i ^ 4 ) ) |
| 50 |
|
i4 |
|- ( _i ^ 4 ) = 1 |
| 51 |
49 50
|
eqtrdi |
|- ( k = 4 -> ( _i ^ k ) = 1 ) |
| 52 |
51
|
oveq1d |
|- ( k = 4 -> ( ( _i ^ k ) S B ) = ( 1 S B ) ) |
| 53 |
52
|
oveq2d |
|- ( k = 4 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( 1 S B ) ) ) |
| 54 |
53
|
fveq2d |
|- ( k = 4 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( 1 S B ) ) ) ) |
| 55 |
54
|
oveq1d |
|- ( k = 4 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) |
| 56 |
51 55
|
oveq12d |
|- ( k = 4 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) |
| 57 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 58 |
|
expcl |
|- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
| 59 |
7 57 58
|
sylancr |
|- ( k e. NN -> ( _i ^ k ) e. CC ) |
| 60 |
59
|
adantl |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. NN ) -> ( _i ^ k ) e. CC ) |
| 61 |
1 2 3 4 5
|
ipval2lem4 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ ( _i ^ k ) e. CC ) -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) e. CC ) |
| 62 |
59 61
|
sylan2 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. NN ) -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) e. CC ) |
| 63 |
60 62
|
mulcld |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. NN ) -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) e. CC ) |
| 64 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 65 |
|
oveq2 |
|- ( k = 3 -> ( _i ^ k ) = ( _i ^ 3 ) ) |
| 66 |
|
i3 |
|- ( _i ^ 3 ) = -u _i |
| 67 |
65 66
|
eqtrdi |
|- ( k = 3 -> ( _i ^ k ) = -u _i ) |
| 68 |
67
|
oveq1d |
|- ( k = 3 -> ( ( _i ^ k ) S B ) = ( -u _i S B ) ) |
| 69 |
68
|
oveq2d |
|- ( k = 3 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( -u _i S B ) ) ) |
| 70 |
69
|
fveq2d |
|- ( k = 3 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( -u _i S B ) ) ) ) |
| 71 |
70
|
oveq1d |
|- ( k = 3 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) |
| 72 |
67 71
|
oveq12d |
|- ( k = 3 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
| 73 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 74 |
|
oveq2 |
|- ( k = 2 -> ( _i ^ k ) = ( _i ^ 2 ) ) |
| 75 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 76 |
74 75
|
eqtrdi |
|- ( k = 2 -> ( _i ^ k ) = -u 1 ) |
| 77 |
76
|
oveq1d |
|- ( k = 2 -> ( ( _i ^ k ) S B ) = ( -u 1 S B ) ) |
| 78 |
77
|
oveq2d |
|- ( k = 2 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( -u 1 S B ) ) ) |
| 79 |
78
|
fveq2d |
|- ( k = 2 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
| 80 |
79
|
oveq1d |
|- ( k = 2 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
| 81 |
76 80
|
oveq12d |
|- ( k = 2 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 82 |
|
1z |
|- 1 e. ZZ |
| 83 |
|
oveq2 |
|- ( k = 1 -> ( _i ^ k ) = ( _i ^ 1 ) ) |
| 84 |
|
exp1 |
|- ( _i e. CC -> ( _i ^ 1 ) = _i ) |
| 85 |
7 84
|
ax-mp |
|- ( _i ^ 1 ) = _i |
| 86 |
83 85
|
eqtrdi |
|- ( k = 1 -> ( _i ^ k ) = _i ) |
| 87 |
86
|
oveq1d |
|- ( k = 1 -> ( ( _i ^ k ) S B ) = ( _i S B ) ) |
| 88 |
87
|
oveq2d |
|- ( k = 1 -> ( A G ( ( _i ^ k ) S B ) ) = ( A G ( _i S B ) ) ) |
| 89 |
88
|
fveq2d |
|- ( k = 1 -> ( N ` ( A G ( ( _i ^ k ) S B ) ) ) = ( N ` ( A G ( _i S B ) ) ) ) |
| 90 |
89
|
oveq1d |
|- ( k = 1 -> ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) |
| 91 |
86 90
|
oveq12d |
|- ( k = 1 -> ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) |
| 92 |
91
|
fsum1 |
|- ( ( 1 e. ZZ /\ ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) e. CC ) -> sum_ k e. ( 1 ... 1 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) |
| 93 |
82 11 92
|
sylancr |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 1 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) |
| 94 |
|
1nn |
|- 1 e. NN |
| 95 |
93 94
|
jctil |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 e. NN /\ sum_ k e. ( 1 ... 1 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) ) ) |
| 96 |
|
eqidd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) |
| 97 |
47 73 81 63 95 96
|
fsump1i |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 2 e. NN /\ sum_ k e. ( 1 ... 2 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) ) |
| 98 |
|
eqidd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 99 |
47 64 72 63 97 98
|
fsump1i |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 3 e. NN /\ sum_ k e. ( 1 ... 3 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| 100 |
|
eqidd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) = ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) ) |
| 101 |
47 48 56 63 99 100
|
fsump1i |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 4 e. NN /\ sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) ) ) |
| 102 |
101
|
simprd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( ( _i x. ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) ) + ( -u 1 x. ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) + ( -u _i x. ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( 1 x. ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) ) ) ) |
| 103 |
43 14
|
subcld |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) e. CC ) |
| 104 |
9 18
|
subcld |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) |
| 105 |
|
mulcl |
|- ( ( _i e. CC /\ ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) e. CC ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) e. CC ) |
| 106 |
7 104 105
|
sylancr |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) e. CC ) |
| 107 |
103 106
|
addcomd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) = ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) |
| 108 |
106 14 43
|
subadd23d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( ( N ` ( A G B ) ) ^ 2 ) ) = ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) ) |
| 109 |
107 108
|
eqtr4d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) = ( ( ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( ( N ` ( A G B ) ) ^ 2 ) ) ) |
| 110 |
46 102 109
|
3eqtr4d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| 111 |
110
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( A G ( ( _i ^ k ) S B ) ) ) ^ 2 ) ) / 4 ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 112 |
6 111
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |