Step |
Hyp |
Ref |
Expression |
1 |
|
dipfval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
dipfval.2 |
|- G = ( +v ` U ) |
3 |
|
dipfval.4 |
|- S = ( .sOLD ` U ) |
4 |
|
dipfval.6 |
|- N = ( normCV ` U ) |
5 |
|
dipfval.7 |
|- P = ( .iOLD ` U ) |
6 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
7 |
6
|
oveq2d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( A G ( 1 S B ) ) = ( A G B ) ) |
8 |
7
|
fveq2d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( A G ( 1 S B ) ) ) = ( N ` ( A G B ) ) ) |
9 |
8
|
oveq1d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
10 |
9
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
11 |
|
ax-1cn |
|- 1 e. CC |
12 |
1 2 3 4 5
|
ipval2lem2 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ 1 e. CC ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) e. RR ) |
13 |
11 12
|
mpan2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G ( 1 S B ) ) ) ^ 2 ) e. RR ) |
14 |
10 13
|
eqeltrrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A G B ) ) ^ 2 ) e. RR ) |