Metamath Proof Explorer


Theorem fsump1i

Description: Optimized version of fsump1 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsump1i.1
|- Z = ( ZZ>= ` M )
fsump1i.2
|- N = ( K + 1 )
fsump1i.3
|- ( k = N -> A = B )
fsump1i.4
|- ( ( ph /\ k e. Z ) -> A e. CC )
fsump1i.5
|- ( ph -> ( K e. Z /\ sum_ k e. ( M ... K ) A = S ) )
fsump1i.6
|- ( ph -> ( S + B ) = T )
Assertion fsump1i
|- ( ph -> ( N e. Z /\ sum_ k e. ( M ... N ) A = T ) )

Proof

Step Hyp Ref Expression
1 fsump1i.1
 |-  Z = ( ZZ>= ` M )
2 fsump1i.2
 |-  N = ( K + 1 )
3 fsump1i.3
 |-  ( k = N -> A = B )
4 fsump1i.4
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
5 fsump1i.5
 |-  ( ph -> ( K e. Z /\ sum_ k e. ( M ... K ) A = S ) )
6 fsump1i.6
 |-  ( ph -> ( S + B ) = T )
7 5 simpld
 |-  ( ph -> K e. Z )
8 7 1 eleqtrdi
 |-  ( ph -> K e. ( ZZ>= ` M ) )
9 peano2uz
 |-  ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) )
10 9 1 eleqtrrdi
 |-  ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. Z )
11 8 10 syl
 |-  ( ph -> ( K + 1 ) e. Z )
12 2 11 eqeltrid
 |-  ( ph -> N e. Z )
13 2 oveq2i
 |-  ( M ... N ) = ( M ... ( K + 1 ) )
14 13 sumeq1i
 |-  sum_ k e. ( M ... N ) A = sum_ k e. ( M ... ( K + 1 ) ) A
15 elfzuz
 |-  ( k e. ( M ... ( K + 1 ) ) -> k e. ( ZZ>= ` M ) )
16 15 1 eleqtrrdi
 |-  ( k e. ( M ... ( K + 1 ) ) -> k e. Z )
17 16 4 sylan2
 |-  ( ( ph /\ k e. ( M ... ( K + 1 ) ) ) -> A e. CC )
18 2 eqeq2i
 |-  ( k = N <-> k = ( K + 1 ) )
19 18 3 sylbir
 |-  ( k = ( K + 1 ) -> A = B )
20 8 17 19 fsump1
 |-  ( ph -> sum_ k e. ( M ... ( K + 1 ) ) A = ( sum_ k e. ( M ... K ) A + B ) )
21 14 20 syl5eq
 |-  ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... K ) A + B ) )
22 5 simprd
 |-  ( ph -> sum_ k e. ( M ... K ) A = S )
23 22 oveq1d
 |-  ( ph -> ( sum_ k e. ( M ... K ) A + B ) = ( S + B ) )
24 21 23 6 3eqtrd
 |-  ( ph -> sum_ k e. ( M ... N ) A = T )
25 12 24 jca
 |-  ( ph -> ( N e. Z /\ sum_ k e. ( M ... N ) A = T ) )