Metamath Proof Explorer


Theorem nvsz

Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvsz.4 S=𝑠OLDU
nvsz.6 Z=0vecU
Assertion nvsz UNrmCVecAASZ=Z

Proof

Step Hyp Ref Expression
1 nvsz.4 S=𝑠OLDU
2 nvsz.6 Z=0vecU
3 eqid 1stU=1stU
4 3 nvvc UNrmCVec1stUCVecOLD
5 eqid +vU=+vU
6 5 vafval +vU=1st1stU
7 1 smfval S=2nd1stU
8 eqid BaseSetU=BaseSetU
9 8 5 bafval BaseSetU=ran+vU
10 eqid GId+vU=GId+vU
11 6 7 9 10 vcz 1stUCVecOLDAASGId+vU=GId+vU
12 4 11 sylan UNrmCVecAASGId+vU=GId+vU
13 5 2 0vfval UNrmCVecZ=GId+vU
14 13 adantr UNrmCVecAZ=GId+vU
15 14 oveq2d UNrmCVecAASZ=ASGId+vU
16 12 15 14 3eqtr4d UNrmCVecAASZ=Z