Metamath Proof Explorer


Theorem nvinv

Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvinv.1 X=BaseSetU
nvinv.2 G=+vU
nvinv.4 S=𝑠OLDU
nvinv.5 M=invG
Assertion nvinv UNrmCVecAX-1SA=MA

Proof

Step Hyp Ref Expression
1 nvinv.1 X=BaseSetU
2 nvinv.2 G=+vU
3 nvinv.4 S=𝑠OLDU
4 nvinv.5 M=invG
5 eqid 1stU=1stU
6 5 nvvc UNrmCVec1stUCVecOLD
7 2 vafval G=1st1stU
8 3 smfval S=2nd1stU
9 1 2 bafval X=ranG
10 7 8 9 4 vcm 1stUCVecOLDAX-1SA=MA
11 6 10 sylan UNrmCVecAX-1SA=MA