Metamath Proof Explorer


Theorem nvinvfval

Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvinvfval.2 G=+vU
nvinvfval.4 S=𝑠OLDU
nvinvfval.3 N=S2nd1×V-1
Assertion nvinvfval UNrmCVecN=invG

Proof

Step Hyp Ref Expression
1 nvinvfval.2 G=+vU
2 nvinvfval.4 S=𝑠OLDU
3 nvinvfval.3 N=S2nd1×V-1
4 eqid BaseSetU=BaseSetU
5 4 2 nvsf UNrmCVecS:×BaseSetUBaseSetU
6 neg1cn 1
7 3 curry1f S:×BaseSetUBaseSetU1N:BaseSetUBaseSetU
8 5 6 7 sylancl UNrmCVecN:BaseSetUBaseSetU
9 8 ffnd UNrmCVecNFnBaseSetU
10 1 nvgrp UNrmCVecGGrpOp
11 4 1 bafval BaseSetU=ranG
12 eqid invG=invG
13 11 12 grpoinvf GGrpOpinvG:BaseSetU1-1 ontoBaseSetU
14 f1ofn invG:BaseSetU1-1 ontoBaseSetUinvGFnBaseSetU
15 10 13 14 3syl UNrmCVecinvGFnBaseSetU
16 5 ffnd UNrmCVecSFn×BaseSetU
17 16 adantr UNrmCVecxBaseSetUSFn×BaseSetU
18 3 curry1val SFn×BaseSetU1Nx=-1Sx
19 17 6 18 sylancl UNrmCVecxBaseSetUNx=-1Sx
20 4 1 2 12 nvinv UNrmCVecxBaseSetU-1Sx=invGx
21 19 20 eqtrd UNrmCVecxBaseSetUNx=invGx
22 9 15 21 eqfnfvd UNrmCVecN=invG