Metamath Proof Explorer


Theorem nvsf

Description: Mapping for the scalar multiplication operation. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvsf.1 X=BaseSetU
nvsf.4 S=𝑠OLDU
Assertion nvsf UNrmCVecS:×XX

Proof

Step Hyp Ref Expression
1 nvsf.1 X=BaseSetU
2 nvsf.4 S=𝑠OLDU
3 eqid 1stU=1stU
4 3 nvvc UNrmCVec1stUCVecOLD
5 eqid +vU=+vU
6 5 vafval +vU=1st1stU
7 2 smfval S=2nd1stU
8 1 5 bafval X=ran+vU
9 6 7 8 vcsm 1stUCVecOLDS:×XX
10 4 9 syl UNrmCVecS:×XX