Metamath Proof Explorer


Theorem nvgcl

Description: Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgcl.1 X=BaseSetU
nvgcl.2 G=+vU
Assertion nvgcl UNrmCVecAXBXAGBX

Proof

Step Hyp Ref Expression
1 nvgcl.1 X=BaseSetU
2 nvgcl.2 G=+vU
3 2 nvgrp UNrmCVecGGrpOp
4 1 2 bafval X=ranG
5 4 grpocl GGrpOpAXBXAGBX
6 3 5 syl3an1 UNrmCVecAXBXAGBX