Metamath Proof Explorer


Theorem curry1f

Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008)

Ref Expression
Hypothesis curry1.1 G=F2ndC×V-1
Assertion curry1f F:A×BDCAG:BD

Proof

Step Hyp Ref Expression
1 curry1.1 G=F2ndC×V-1
2 ffn F:A×BDFFnA×B
3 1 curry1 FFnA×BCAG=xBCFx
4 2 3 sylan F:A×BDCAG=xBCFx
5 fovcdm F:A×BDCAxBCFxD
6 5 3expa F:A×BDCAxBCFxD
7 4 6 fmpt3d F:A×BDCAG:BD