Metamath Proof Explorer


Theorem grpoinvf

Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpasscan1.1 X = ran G
grpasscan1.2 N = inv G
Assertion grpoinvf G GrpOp N : X 1-1 onto X

Proof

Step Hyp Ref Expression
1 grpasscan1.1 X = ran G
2 grpasscan1.2 N = inv G
3 riotaex ι y X | y G x = GId G V
4 eqid x X ι y X | y G x = GId G = x X ι y X | y G x = GId G
5 3 4 fnmpti x X ι y X | y G x = GId G Fn X
6 eqid GId G = GId G
7 1 6 2 grpoinvfval G GrpOp N = x X ι y X | y G x = GId G
8 7 fneq1d G GrpOp N Fn X x X ι y X | y G x = GId G Fn X
9 5 8 mpbiri G GrpOp N Fn X
10 fnrnfv N Fn X ran N = y | x X y = N x
11 9 10 syl G GrpOp ran N = y | x X y = N x
12 1 2 grpoinvcl G GrpOp y X N y X
13 1 2 grpo2inv G GrpOp y X N N y = y
14 13 eqcomd G GrpOp y X y = N N y
15 fveq2 x = N y N x = N N y
16 15 rspceeqv N y X y = N N y x X y = N x
17 12 14 16 syl2anc G GrpOp y X x X y = N x
18 17 ex G GrpOp y X x X y = N x
19 simpr G GrpOp x X y = N x y = N x
20 1 2 grpoinvcl G GrpOp x X N x X
21 20 adantr G GrpOp x X y = N x N x X
22 19 21 eqeltrd G GrpOp x X y = N x y X
23 22 rexlimdva2 G GrpOp x X y = N x y X
24 18 23 impbid G GrpOp y X x X y = N x
25 24 abbi2dv G GrpOp X = y | x X y = N x
26 11 25 eqtr4d G GrpOp ran N = X
27 fveq2 N x = N y N N x = N N y
28 1 2 grpo2inv G GrpOp x X N N x = x
29 28 13 eqeqan12d G GrpOp x X G GrpOp y X N N x = N N y x = y
30 29 anandis G GrpOp x X y X N N x = N N y x = y
31 27 30 syl5ib G GrpOp x X y X N x = N y x = y
32 31 ralrimivva G GrpOp x X y X N x = N y x = y
33 dff1o6 N : X 1-1 onto X N Fn X ran N = X x X y X N x = N y x = y
34 9 26 32 33 syl3anbrc G GrpOp N : X 1-1 onto X