Metamath Proof Explorer


Theorem grpoinvop

Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpasscan1.1 X = ran G
grpasscan1.2 N = inv G
Assertion grpoinvop G GrpOp A X B X N A G B = N B G N A

Proof

Step Hyp Ref Expression
1 grpasscan1.1 X = ran G
2 grpasscan1.2 N = inv G
3 simp1 G GrpOp A X B X G GrpOp
4 simp2 G GrpOp A X B X A X
5 simp3 G GrpOp A X B X B X
6 1 2 grpoinvcl G GrpOp B X N B X
7 6 3adant2 G GrpOp A X B X N B X
8 1 2 grpoinvcl G GrpOp A X N A X
9 8 3adant3 G GrpOp A X B X N A X
10 1 grpocl G GrpOp N B X N A X N B G N A X
11 3 7 9 10 syl3anc G GrpOp A X B X N B G N A X
12 1 grpoass G GrpOp A X B X N B G N A X A G B G N B G N A = A G B G N B G N A
13 3 4 5 11 12 syl13anc G GrpOp A X B X A G B G N B G N A = A G B G N B G N A
14 eqid GId G = GId G
15 1 14 2 grporinv G GrpOp B X B G N B = GId G
16 15 3adant2 G GrpOp A X B X B G N B = GId G
17 16 oveq1d G GrpOp A X B X B G N B G N A = GId G G N A
18 1 grpoass G GrpOp B X N B X N A X B G N B G N A = B G N B G N A
19 3 5 7 9 18 syl13anc G GrpOp A X B X B G N B G N A = B G N B G N A
20 1 14 grpolid G GrpOp N A X GId G G N A = N A
21 8 20 syldan G GrpOp A X GId G G N A = N A
22 21 3adant3 G GrpOp A X B X GId G G N A = N A
23 17 19 22 3eqtr3d G GrpOp A X B X B G N B G N A = N A
24 23 oveq2d G GrpOp A X B X A G B G N B G N A = A G N A
25 1 14 2 grporinv G GrpOp A X A G N A = GId G
26 25 3adant3 G GrpOp A X B X A G N A = GId G
27 13 24 26 3eqtrd G GrpOp A X B X A G B G N B G N A = GId G
28 1 grpocl G GrpOp A X B X A G B X
29 1 14 2 grpoinvid1 G GrpOp A G B X N B G N A X N A G B = N B G N A A G B G N B G N A = GId G
30 3 28 11 29 syl3anc G GrpOp A X B X N A G B = N B G N A A G B G N B G N A = GId G
31 27 30 mpbird G GrpOp A X B X N A G B = N B G N A