Metamath Proof Explorer


Theorem grpodivfval

Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X=ranG
grpdiv.2 N=invG
grpdiv.3 D=/gG
Assertion grpodivfval GGrpOpD=xX,yXxGNy

Proof

Step Hyp Ref Expression
1 grpdiv.1 X=ranG
2 grpdiv.2 N=invG
3 grpdiv.3 D=/gG
4 rnexg GGrpOpranGV
5 1 4 eqeltrid GGrpOpXV
6 mpoexga XVXVxX,yXxGNyV
7 5 5 6 syl2anc GGrpOpxX,yXxGNyV
8 rneq g=Grang=ranG
9 8 1 eqtr4di g=Grang=X
10 id g=Gg=G
11 eqidd g=Gx=x
12 fveq2 g=Ginvg=invG
13 12 2 eqtr4di g=Ginvg=N
14 13 fveq1d g=Ginvgy=Ny
15 10 11 14 oveq123d g=Gxginvgy=xGNy
16 9 9 15 mpoeq123dv g=Gxrang,yrangxginvgy=xX,yXxGNy
17 df-gdiv /g=gGrpOpxrang,yrangxginvgy
18 16 17 fvmptg GGrpOpxX,yXxGNyV/gG=xX,yXxGNy
19 7 18 mpdan GGrpOp/gG=xX,yXxGNy
20 3 19 eqtrid GGrpOpD=xX,yXxGNy