Step |
Hyp |
Ref |
Expression |
1 |
|
grpdiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpdiv.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
3 |
|
grpdiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
4 |
|
rnexg |
⊢ ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V ) |
5 |
1 4
|
eqeltrid |
⊢ ( 𝐺 ∈ GrpOp → 𝑋 ∈ V ) |
6 |
|
mpoexga |
⊢ ( ( 𝑋 ∈ V ∧ 𝑋 ∈ V ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ∈ V ) |
7 |
5 5 6
|
syl2anc |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ∈ V ) |
8 |
|
rneq |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
10 |
|
id |
⊢ ( 𝑔 = 𝐺 → 𝑔 = 𝐺 ) |
11 |
|
eqidd |
⊢ ( 𝑔 = 𝐺 → 𝑥 = 𝑥 ) |
12 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( inv ‘ 𝑔 ) = ( inv ‘ 𝐺 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( inv ‘ 𝑔 ) = 𝑁 ) |
14 |
13
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
15 |
10 11 14
|
oveq123d |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) = ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) |
16 |
9 9 15
|
mpoeq123dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
17 |
|
df-gdiv |
⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) |
18 |
16 17
|
fvmptg |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ∈ V ) → ( /𝑔 ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
19 |
7 18
|
mpdan |
⊢ ( 𝐺 ∈ GrpOp → ( /𝑔 ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
20 |
3 19
|
eqtrid |
⊢ ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |