Metamath Proof Explorer


Theorem grpodivfval

Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = ( inv ‘ 𝐺 )
grpdiv.3 𝐷 = ( /𝑔𝐺 )
Assertion grpodivfval ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 grpdiv.1 𝑋 = ran 𝐺
2 grpdiv.2 𝑁 = ( inv ‘ 𝐺 )
3 grpdiv.3 𝐷 = ( /𝑔𝐺 )
4 rnexg ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V )
5 1 4 eqeltrid ( 𝐺 ∈ GrpOp → 𝑋 ∈ V )
6 mpoexga ( ( 𝑋 ∈ V ∧ 𝑋 ∈ V ) → ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) ∈ V )
7 5 5 6 syl2anc ( 𝐺 ∈ GrpOp → ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) ∈ V )
8 rneq ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 )
9 8 1 eqtr4di ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 )
10 id ( 𝑔 = 𝐺𝑔 = 𝐺 )
11 eqidd ( 𝑔 = 𝐺𝑥 = 𝑥 )
12 fveq2 ( 𝑔 = 𝐺 → ( inv ‘ 𝑔 ) = ( inv ‘ 𝐺 ) )
13 12 2 eqtr4di ( 𝑔 = 𝐺 → ( inv ‘ 𝑔 ) = 𝑁 )
14 13 fveq1d ( 𝑔 = 𝐺 → ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) = ( 𝑁𝑦 ) )
15 10 11 14 oveq123d ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) = ( 𝑥 𝐺 ( 𝑁𝑦 ) ) )
16 9 9 15 mpoeq123dv ( 𝑔 = 𝐺 → ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) )
17 df-gdiv /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) )
18 16 17 fvmptg ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) ∈ V ) → ( /𝑔𝐺 ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) )
19 7 18 mpdan ( 𝐺 ∈ GrpOp → ( /𝑔𝐺 ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) )
20 3 19 eqtrid ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) )