Metamath Proof Explorer


Theorem grpodivval

Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = ( inv ‘ 𝐺 )
grpdiv.3 𝐷 = ( /𝑔𝐺 )
Assertion grpodivval ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 grpdiv.1 𝑋 = ran 𝐺
2 grpdiv.2 𝑁 = ( inv ‘ 𝐺 )
3 grpdiv.3 𝐷 = ( /𝑔𝐺 )
4 1 2 3 grpodivfval ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) )
5 4 oveqd ( 𝐺 ∈ GrpOp → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) 𝐵 ) )
6 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐺 ( 𝑁𝑦 ) ) = ( 𝐴 𝐺 ( 𝑁𝑦 ) ) )
7 fveq2 ( 𝑦 = 𝐵 → ( 𝑁𝑦 ) = ( 𝑁𝐵 ) )
8 7 oveq2d ( 𝑦 = 𝐵 → ( 𝐴 𝐺 ( 𝑁𝑦 ) ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )
9 eqid ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) )
10 ovex ( 𝐴 𝐺 ( 𝑁𝐵 ) ) ∈ V
11 6 8 9 10 ovmpo ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( 𝑥𝑋 , 𝑦𝑋 ↦ ( 𝑥 𝐺 ( 𝑁𝑦 ) ) ) 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )
12 5 11 sylan9eq ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )
13 12 3impb ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )