| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpdiv.1 |
|- X = ran G |
| 2 |
|
grpdiv.2 |
|- N = ( inv ` G ) |
| 3 |
|
grpdiv.3 |
|- D = ( /g ` G ) |
| 4 |
|
rnexg |
|- ( G e. GrpOp -> ran G e. _V ) |
| 5 |
1 4
|
eqeltrid |
|- ( G e. GrpOp -> X e. _V ) |
| 6 |
|
mpoexga |
|- ( ( X e. _V /\ X e. _V ) -> ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) |
| 7 |
5 5 6
|
syl2anc |
|- ( G e. GrpOp -> ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) |
| 8 |
|
rneq |
|- ( g = G -> ran g = ran G ) |
| 9 |
8 1
|
eqtr4di |
|- ( g = G -> ran g = X ) |
| 10 |
|
id |
|- ( g = G -> g = G ) |
| 11 |
|
eqidd |
|- ( g = G -> x = x ) |
| 12 |
|
fveq2 |
|- ( g = G -> ( inv ` g ) = ( inv ` G ) ) |
| 13 |
12 2
|
eqtr4di |
|- ( g = G -> ( inv ` g ) = N ) |
| 14 |
13
|
fveq1d |
|- ( g = G -> ( ( inv ` g ) ` y ) = ( N ` y ) ) |
| 15 |
10 11 14
|
oveq123d |
|- ( g = G -> ( x g ( ( inv ` g ) ` y ) ) = ( x G ( N ` y ) ) ) |
| 16 |
9 9 15
|
mpoeq123dv |
|- ( g = G -> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| 17 |
|
df-gdiv |
|- /g = ( g e. GrpOp |-> ( x e. ran g , y e. ran g |-> ( x g ( ( inv ` g ) ` y ) ) ) ) |
| 18 |
16 17
|
fvmptg |
|- ( ( G e. GrpOp /\ ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) e. _V ) -> ( /g ` G ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| 19 |
7 18
|
mpdan |
|- ( G e. GrpOp -> ( /g ` G ) = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |
| 20 |
3 19
|
eqtrid |
|- ( G e. GrpOp -> D = ( x e. X , y e. X |-> ( x G ( N ` y ) ) ) ) |