Metamath Proof Explorer


Theorem grpoinvid1

Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpinv.1 X=ranG
grpinv.2 U=GIdG
grpinv.3 N=invG
Assertion grpoinvid1 GGrpOpAXBXNA=BAGB=U

Proof

Step Hyp Ref Expression
1 grpinv.1 X=ranG
2 grpinv.2 U=GIdG
3 grpinv.3 N=invG
4 oveq2 NA=BAGNA=AGB
5 4 adantl GGrpOpAXBXNA=BAGNA=AGB
6 1 2 3 grporinv GGrpOpAXAGNA=U
7 6 3adant3 GGrpOpAXBXAGNA=U
8 7 adantr GGrpOpAXBXNA=BAGNA=U
9 5 8 eqtr3d GGrpOpAXBXNA=BAGB=U
10 oveq2 AGB=UNAGAGB=NAGU
11 10 adantl GGrpOpAXBXAGB=UNAGAGB=NAGU
12 1 2 3 grpolinv GGrpOpAXNAGA=U
13 12 oveq1d GGrpOpAXNAGAGB=UGB
14 13 3adant3 GGrpOpAXBXNAGAGB=UGB
15 1 3 grpoinvcl GGrpOpAXNAX
16 15 adantrr GGrpOpAXBXNAX
17 simprl GGrpOpAXBXAX
18 simprr GGrpOpAXBXBX
19 16 17 18 3jca GGrpOpAXBXNAXAXBX
20 1 grpoass GGrpOpNAXAXBXNAGAGB=NAGAGB
21 19 20 syldan GGrpOpAXBXNAGAGB=NAGAGB
22 21 3impb GGrpOpAXBXNAGAGB=NAGAGB
23 14 22 eqtr3d GGrpOpAXBXUGB=NAGAGB
24 1 2 grpolid GGrpOpBXUGB=B
25 24 3adant2 GGrpOpAXBXUGB=B
26 23 25 eqtr3d GGrpOpAXBXNAGAGB=B
27 26 adantr GGrpOpAXBXAGB=UNAGAGB=B
28 1 2 grporid GGrpOpNAXNAGU=NA
29 15 28 syldan GGrpOpAXNAGU=NA
30 29 3adant3 GGrpOpAXBXNAGU=NA
31 30 adantr GGrpOpAXBXAGB=UNAGU=NA
32 11 27 31 3eqtr3rd GGrpOpAXBXAGB=UNA=B
33 9 32 impbida GGrpOpAXBXNA=BAGB=U