| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinv.1 |
|- X = ran G |
| 2 |
|
grpinv.2 |
|- U = ( GId ` G ) |
| 3 |
|
grpinv.3 |
|- N = ( inv ` G ) |
| 4 |
|
oveq2 |
|- ( ( N ` A ) = B -> ( A G ( N ` A ) ) = ( A G B ) ) |
| 5 |
4
|
adantl |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = ( A G B ) ) |
| 6 |
1 2 3
|
grporinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( N ` A ) ) = U ) |
| 7 |
6
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G ( N ` A ) ) = U ) |
| 8 |
7
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G ( N ` A ) ) = U ) |
| 9 |
5 8
|
eqtr3d |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( N ` A ) = B ) -> ( A G B ) = U ) |
| 10 |
|
oveq2 |
|- ( ( A G B ) = U -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) |
| 11 |
10
|
adantl |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = ( ( N ` A ) G U ) ) |
| 12 |
1 2 3
|
grpolinv |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G A ) = U ) |
| 13 |
12
|
oveq1d |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) |
| 14 |
13
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( U G B ) ) |
| 15 |
1 3
|
grpoinvcl |
|- ( ( G e. GrpOp /\ A e. X ) -> ( N ` A ) e. X ) |
| 16 |
15
|
adantrr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( N ` A ) e. X ) |
| 17 |
|
simprl |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
| 18 |
|
simprr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
| 19 |
16 17 18
|
3jca |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) |
| 20 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( ( N ` A ) e. X /\ A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 21 |
19 20
|
syldan |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 22 |
21
|
3impb |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( ( N ` A ) G A ) G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 23 |
14 22
|
eqtr3d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = ( ( N ` A ) G ( A G B ) ) ) |
| 24 |
1 2
|
grpolid |
|- ( ( G e. GrpOp /\ B e. X ) -> ( U G B ) = B ) |
| 25 |
24
|
3adant2 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( U G B ) = B ) |
| 26 |
23 25
|
eqtr3d |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G ( A G B ) ) = B ) |
| 27 |
26
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G ( A G B ) ) = B ) |
| 28 |
1 2
|
grporid |
|- ( ( G e. GrpOp /\ ( N ` A ) e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 29 |
15 28
|
syldan |
|- ( ( G e. GrpOp /\ A e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 30 |
29
|
3adant3 |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 31 |
30
|
adantr |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( ( N ` A ) G U ) = ( N ` A ) ) |
| 32 |
11 27 31
|
3eqtr3rd |
|- ( ( ( G e. GrpOp /\ A e. X /\ B e. X ) /\ ( A G B ) = U ) -> ( N ` A ) = B ) |
| 33 |
9 32
|
impbida |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( N ` A ) = B <-> ( A G B ) = U ) ) |