Metamath Proof Explorer


Theorem vcz

Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vc0.1 G = 1 st W
vc0.2 S = 2 nd W
vc0.3 X = ran G
vc0.4 Z = GId G
Assertion vcz W CVec OLD A A S Z = Z

Proof

Step Hyp Ref Expression
1 vc0.1 G = 1 st W
2 vc0.2 S = 2 nd W
3 vc0.3 X = ran G
4 vc0.4 Z = GId G
5 1 3 4 vczcl W CVec OLD Z X
6 5 anim2i A W CVec OLD A Z X
7 6 ancoms W CVec OLD A A Z X
8 0cn 0
9 1 2 3 vcass W CVec OLD A 0 Z X A 0 S Z = A S 0 S Z
10 8 9 mp3anr2 W CVec OLD A Z X A 0 S Z = A S 0 S Z
11 7 10 syldan W CVec OLD A A 0 S Z = A S 0 S Z
12 mul01 A A 0 = 0
13 12 oveq1d A A 0 S Z = 0 S Z
14 1 2 3 4 vc0 W CVec OLD Z X 0 S Z = Z
15 5 14 mpdan W CVec OLD 0 S Z = Z
16 13 15 sylan9eqr W CVec OLD A A 0 S Z = Z
17 15 oveq2d W CVec OLD A S 0 S Z = A S Z
18 17 adantr W CVec OLD A A S 0 S Z = A S Z
19 11 16 18 3eqtr3rd W CVec OLD A A S Z = Z