Metamath Proof Explorer


Theorem vcz

Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vc0.1 G=1stW
vc0.2 S=2ndW
vc0.3 X=ranG
vc0.4 Z=GIdG
Assertion vcz WCVecOLDAASZ=Z

Proof

Step Hyp Ref Expression
1 vc0.1 G=1stW
2 vc0.2 S=2ndW
3 vc0.3 X=ranG
4 vc0.4 Z=GIdG
5 1 3 4 vczcl WCVecOLDZX
6 5 anim2i AWCVecOLDAZX
7 6 ancoms WCVecOLDAAZX
8 0cn 0
9 1 2 3 vcass WCVecOLDA0ZXA0SZ=AS0SZ
10 8 9 mp3anr2 WCVecOLDAZXA0SZ=AS0SZ
11 7 10 syldan WCVecOLDAA0SZ=AS0SZ
12 mul01 AA0=0
13 12 oveq1d AA0SZ=0SZ
14 1 2 3 4 vc0 WCVecOLDZX0SZ=Z
15 5 14 mpdan WCVecOLD0SZ=Z
16 13 15 sylan9eqr WCVecOLDAA0SZ=Z
17 15 oveq2d WCVecOLDAS0SZ=ASZ
18 17 adantr WCVecOLDAAS0SZ=ASZ
19 11 16 18 3eqtr3rd WCVecOLDAASZ=Z