| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vc0.1 |
⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
| 2 |
|
vc0.2 |
⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
| 3 |
|
vc0.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
vc0.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 5 |
1 3 4
|
vczcl |
⊢ ( 𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋 ) |
| 6 |
5
|
anim2i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD ) → ( 𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) |
| 8 |
|
0cn |
⊢ 0 ∈ ℂ |
| 9 |
1 2 3
|
vcass |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) |
| 10 |
8 9
|
mp3anr2 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋 ) ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) |
| 11 |
7 10
|
syldan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) ) |
| 12 |
|
mul01 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = ( 0 𝑆 𝑍 ) ) |
| 14 |
1 2 3 4
|
vc0 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝑍 ∈ 𝑋 ) → ( 0 𝑆 𝑍 ) = 𝑍 ) |
| 15 |
5 14
|
mpdan |
⊢ ( 𝑊 ∈ CVecOLD → ( 0 𝑆 𝑍 ) = 𝑍 ) |
| 16 |
13 15
|
sylan9eqr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 · 0 ) 𝑆 𝑍 ) = 𝑍 ) |
| 17 |
15
|
oveq2d |
⊢ ( 𝑊 ∈ CVecOLD → ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) = ( 𝐴 𝑆 𝑍 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( 𝐴 𝑆 ( 0 𝑆 𝑍 ) ) = ( 𝐴 𝑆 𝑍 ) ) |
| 19 |
11 16 18
|
3eqtr3rd |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ) → ( 𝐴 𝑆 𝑍 ) = 𝑍 ) |