Metamath Proof Explorer


Theorem vcm

Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 25-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vcm.1 𝐺 = ( 1st𝑊 )
vcm.2 𝑆 = ( 2nd𝑊 )
vcm.3 𝑋 = ran 𝐺
vcm.4 𝑀 = ( inv ‘ 𝐺 )
Assertion vcm ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀𝐴 ) )

Proof

Step Hyp Ref Expression
1 vcm.1 𝐺 = ( 1st𝑊 )
2 vcm.2 𝑆 = ( 2nd𝑊 )
3 vcm.3 𝑋 = ran 𝐺
4 vcm.4 𝑀 = ( inv ‘ 𝐺 )
5 1 vcgrp ( 𝑊 ∈ CVecOLD𝐺 ∈ GrpOp )
6 5 adantr ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → 𝐺 ∈ GrpOp )
7 neg1cn - 1 ∈ ℂ
8 1 2 3 vccl ( ( 𝑊 ∈ CVecOLD ∧ - 1 ∈ ℂ ∧ 𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 )
9 7 8 mp3an2 ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 )
10 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
11 3 10 grporid ( ( 𝐺 ∈ GrpOp ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) )
12 6 9 11 syl2anc ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) )
13 simpr ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → 𝐴𝑋 )
14 3 4 grpoinvcl ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑀𝐴 ) ∈ 𝑋 )
15 5 14 sylan ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( 𝑀𝐴 ) ∈ 𝑋 )
16 3 grpoass ( ( 𝐺 ∈ GrpOp ∧ ( ( - 1 𝑆 𝐴 ) ∈ 𝑋𝐴𝑋 ∧ ( 𝑀𝐴 ) ∈ 𝑋 ) ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀𝐴 ) ) ) )
17 6 9 13 15 16 syl13anc ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀𝐴 ) ) ) )
18 1 2 3 vcidOLD ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 )
19 18 oveq2d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) )
20 ax-1cn 1 ∈ ℂ
21 1pneg1e0 ( 1 + - 1 ) = 0
22 20 7 21 addcomli ( - 1 + 1 ) = 0
23 22 oveq1i ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( 0 𝑆 𝐴 )
24 1 2 3 vcdir ( ( 𝑊 ∈ CVecOLD ∧ ( - 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) )
25 7 24 mp3anr1 ( ( 𝑊 ∈ CVecOLD ∧ ( 1 ∈ ℂ ∧ 𝐴𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) )
26 20 25 mpanr1 ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) )
27 1 2 3 10 vc0 ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( 0 𝑆 𝐴 ) = ( GId ‘ 𝐺 ) )
28 23 26 27 3eqtr3a ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( GId ‘ 𝐺 ) )
29 19 28 eqtr3d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) )
30 29 oveq1d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀𝐴 ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀𝐴 ) ) )
31 17 30 eqtr3d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀𝐴 ) ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀𝐴 ) ) )
32 3 10 4 grporinv ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝐴 𝐺 ( 𝑀𝐴 ) ) = ( GId ‘ 𝐺 ) )
33 5 32 sylan ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( 𝐴 𝐺 ( 𝑀𝐴 ) ) = ( GId ‘ 𝐺 ) )
34 33 oveq2d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀𝐴 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) )
35 31 34 eqtr3d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) )
36 3 10 grpolid ( ( 𝐺 ∈ GrpOp ∧ ( 𝑀𝐴 ) ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀𝐴 ) ) = ( 𝑀𝐴 ) )
37 6 15 36 syl2anc ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀𝐴 ) ) = ( 𝑀𝐴 ) )
38 35 37 eqtr3d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( 𝑀𝐴 ) )
39 12 38 eqtr3d ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀𝐴 ) )