| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vcm.1 |
⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
| 2 |
|
vcm.2 |
⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
| 3 |
|
vcm.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
vcm.4 |
⊢ 𝑀 = ( inv ‘ 𝐺 ) |
| 5 |
1
|
vcgrp |
⊢ ( 𝑊 ∈ CVecOLD → 𝐺 ∈ GrpOp ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
| 7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 8 |
1 2 3
|
vccl |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 9 |
7 8
|
mp3an2 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 10 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
| 11 |
3 10
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) ) |
| 12 |
6 9 11
|
syl2anc |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 14 |
3 4
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
| 15 |
5 14
|
sylan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
| 16 |
3
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 17 |
6 9 13 15 16
|
syl13anc |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 18 |
1 2 3
|
vcidOLD |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 19 |
18
|
oveq2d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) ) |
| 20 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 21 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
| 22 |
20 7 21
|
addcomli |
⊢ ( - 1 + 1 ) = 0 |
| 23 |
22
|
oveq1i |
⊢ ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( 0 𝑆 𝐴 ) |
| 24 |
1 2 3
|
vcdir |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( - 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 25 |
7 24
|
mp3anr1 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 26 |
20 25
|
mpanr1 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 27 |
1 2 3 10
|
vc0 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 28 |
23 26 27
|
3eqtr3a |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 29 |
19 28
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) |
| 31 |
17 30
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) |
| 32 |
3 10 4
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 33 |
5 32
|
sylan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 35 |
31 34
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 36 |
3 10
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
| 37 |
6 15 36
|
syl2anc |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
| 38 |
35 37
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
| 39 |
12 38
|
eqtr3d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ) |