Metamath Proof Explorer


Theorem vcdir

Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vciOLD.1 𝐺 = ( 1st𝑊 )
vciOLD.2 𝑆 = ( 2nd𝑊 )
vciOLD.3 𝑋 = ran 𝐺
Assertion vcdir ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 vciOLD.1 𝐺 = ( 1st𝑊 )
2 vciOLD.2 𝑆 = ( 2nd𝑊 )
3 vciOLD.3 𝑋 = ran 𝐺
4 1 2 3 vciOLD ( 𝑊 ∈ CVecOLD → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) )
5 simpl ( ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) → ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
6 5 ralimi ( ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) → ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
7 6 adantl ( ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) → ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
8 7 ralimi ( ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
9 8 adantl ( ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
10 9 ralimi ( ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑥𝑋𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
11 10 3ad2ant3 ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) → ∀ 𝑥𝑋𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
12 4 11 syl ( 𝑊 ∈ CVecOLD → ∀ 𝑥𝑋𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
13 oveq2 ( 𝑥 = 𝐶 → ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 + 𝑧 ) 𝑆 𝐶 ) )
14 oveq2 ( 𝑥 = 𝐶 → ( 𝑦 𝑆 𝑥 ) = ( 𝑦 𝑆 𝐶 ) )
15 oveq2 ( 𝑥 = 𝐶 → ( 𝑧 𝑆 𝑥 ) = ( 𝑧 𝑆 𝐶 ) )
16 14 15 oveq12d ( 𝑥 = 𝐶 → ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) = ( ( 𝑦 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) )
17 13 16 eqeq12d ( 𝑥 = 𝐶 → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ↔ ( ( 𝑦 + 𝑧 ) 𝑆 𝐶 ) = ( ( 𝑦 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) ) )
18 oveq1 ( 𝑦 = 𝐴 → ( 𝑦 + 𝑧 ) = ( 𝐴 + 𝑧 ) )
19 18 oveq1d ( 𝑦 = 𝐴 → ( ( 𝑦 + 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 + 𝑧 ) 𝑆 𝐶 ) )
20 oveq1 ( 𝑦 = 𝐴 → ( 𝑦 𝑆 𝐶 ) = ( 𝐴 𝑆 𝐶 ) )
21 20 oveq1d ( 𝑦 = 𝐴 → ( ( 𝑦 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) )
22 19 21 eqeq12d ( 𝑦 = 𝐴 → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝐶 ) = ( ( 𝑦 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) ↔ ( ( 𝐴 + 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) ) )
23 oveq2 ( 𝑧 = 𝐵 → ( 𝐴 + 𝑧 ) = ( 𝐴 + 𝐵 ) )
24 23 oveq1d ( 𝑧 = 𝐵 → ( ( 𝐴 + 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) )
25 oveq1 ( 𝑧 = 𝐵 → ( 𝑧 𝑆 𝐶 ) = ( 𝐵 𝑆 𝐶 ) )
26 25 oveq2d ( 𝑧 = 𝐵 → ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) )
27 24 26 eqeq12d ( 𝑧 = 𝐵 → ( ( ( 𝐴 + 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝑧 𝑆 𝐶 ) ) ↔ ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) ) )
28 17 22 27 rspc3v ( ( 𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥𝑋𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) ) )
29 12 28 syl5 ( ( 𝐶𝑋𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑊 ∈ CVecOLD → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) ) )
30 29 3coml ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) → ( 𝑊 ∈ CVecOLD → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) ) )
31 30 impcom ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( 𝐴 + 𝐵 ) 𝑆 𝐶 ) = ( ( 𝐴 𝑆 𝐶 ) 𝐺 ( 𝐵 𝑆 𝐶 ) ) )