Metamath Proof Explorer


Theorem vcidOLD

Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) Obsolete theorem, use clmvs1 together with cvsclm instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses vciOLD.1 𝐺 = ( 1st𝑊 )
vciOLD.2 𝑆 = ( 2nd𝑊 )
vciOLD.3 𝑋 = ran 𝐺
Assertion vcidOLD ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 vciOLD.1 𝐺 = ( 1st𝑊 )
2 vciOLD.2 𝑆 = ( 2nd𝑊 )
3 vciOLD.3 𝑋 = ran 𝐺
4 1 2 3 vciOLD ( 𝑊 ∈ CVecOLD → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) )
5 simpl ( ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ( 1 𝑆 𝑥 ) = 𝑥 )
6 5 ralimi ( ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑥𝑋 ( 1 𝑆 𝑥 ) = 𝑥 )
7 6 3ad2ant3 ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) → ∀ 𝑥𝑋 ( 1 𝑆 𝑥 ) = 𝑥 )
8 4 7 syl ( 𝑊 ∈ CVecOLD → ∀ 𝑥𝑋 ( 1 𝑆 𝑥 ) = 𝑥 )
9 oveq2 ( 𝑥 = 𝐴 → ( 1 𝑆 𝑥 ) = ( 1 𝑆 𝐴 ) )
10 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
11 9 10 eqeq12d ( 𝑥 = 𝐴 → ( ( 1 𝑆 𝑥 ) = 𝑥 ↔ ( 1 𝑆 𝐴 ) = 𝐴 ) )
12 11 rspccva ( ( ∀ 𝑥𝑋 ( 1 𝑆 𝑥 ) = 𝑥𝐴𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 )
13 8 12 sylan ( ( 𝑊 ∈ CVecOLD𝐴𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 )