| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipoglb0.i |
|- I = ( toInc ` F ) |
| 2 |
|
ipolub00.u |
|- ( ph -> U = ( lub ` I ) ) |
| 3 |
|
ipolub00.f |
|- ( ph -> (/) e. F ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ F e. _V ) -> U = ( lub ` I ) ) |
| 5 |
|
int0el |
|- ( (/) e. F -> |^| F = (/) ) |
| 6 |
3 5
|
syl |
|- ( ph -> |^| F = (/) ) |
| 7 |
6 3
|
eqeltrd |
|- ( ph -> |^| F e. F ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ F e. _V ) -> |^| F e. F ) |
| 9 |
|
simpr |
|- ( ( ph /\ F e. _V ) -> F e. _V ) |
| 10 |
1 4 8 9
|
ipolub0 |
|- ( ( ph /\ F e. _V ) -> ( U ` (/) ) = |^| F ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ F e. _V ) -> |^| F = (/) ) |
| 12 |
10 11
|
eqtrd |
|- ( ( ph /\ F e. _V ) -> ( U ` (/) ) = (/) ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ -. F e. _V ) -> U = ( lub ` I ) ) |
| 14 |
|
fvprc |
|- ( -. F e. _V -> ( toInc ` F ) = (/) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ -. F e. _V ) -> ( toInc ` F ) = (/) ) |
| 16 |
1 15
|
eqtrid |
|- ( ( ph /\ -. F e. _V ) -> I = (/) ) |
| 17 |
16
|
fveq2d |
|- ( ( ph /\ -. F e. _V ) -> ( lub ` I ) = ( lub ` (/) ) ) |
| 18 |
13 17
|
eqtrd |
|- ( ( ph /\ -. F e. _V ) -> U = ( lub ` (/) ) ) |
| 19 |
18
|
fveq1d |
|- ( ( ph /\ -. F e. _V ) -> ( U ` (/) ) = ( ( lub ` (/) ) ` (/) ) ) |
| 20 |
|
rex0 |
|- -. E. x e. (/) ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) |
| 21 |
20
|
intnan |
|- -. ( (/) C_ (/) /\ E. x e. (/) ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) ) |
| 22 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 23 |
|
eqid |
|- ( le ` (/) ) = ( le ` (/) ) |
| 24 |
|
eqid |
|- ( lub ` (/) ) = ( lub ` (/) ) |
| 25 |
|
biid |
|- ( ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) <-> ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) ) |
| 26 |
|
0pos |
|- (/) e. Poset |
| 27 |
26
|
a1i |
|- ( ( ph /\ -. F e. _V ) -> (/) e. Poset ) |
| 28 |
22 23 24 25 27
|
lubeldm2 |
|- ( ( ph /\ -. F e. _V ) -> ( (/) e. dom ( lub ` (/) ) <-> ( (/) C_ (/) /\ E. x e. (/) ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) ) ) ) |
| 29 |
21 28
|
mtbiri |
|- ( ( ph /\ -. F e. _V ) -> -. (/) e. dom ( lub ` (/) ) ) |
| 30 |
|
ndmfv |
|- ( -. (/) e. dom ( lub ` (/) ) -> ( ( lub ` (/) ) ` (/) ) = (/) ) |
| 31 |
29 30
|
syl |
|- ( ( ph /\ -. F e. _V ) -> ( ( lub ` (/) ) ` (/) ) = (/) ) |
| 32 |
19 31
|
eqtrd |
|- ( ( ph /\ -. F e. _V ) -> ( U ` (/) ) = (/) ) |
| 33 |
12 32
|
pm2.61dan |
|- ( ph -> ( U ` (/) ) = (/) ) |