Metamath Proof Explorer


Theorem iscnrm3rlem5

Description: Lemma for iscnrm3rlem6 . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypotheses iscnrm3rlem4.1
|- ( ph -> J e. Top )
iscnrm3rlem4.2
|- ( ph -> S C_ U. J )
iscnrm3rlem5.3
|- ( ph -> T C_ U. J )
Assertion iscnrm3rlem5
|- ( ph -> ( U. J \ ( ( ( cls ` J ) ` S ) i^i ( ( cls ` J ) ` T ) ) ) e. J )

Proof

Step Hyp Ref Expression
1 iscnrm3rlem4.1
 |-  ( ph -> J e. Top )
2 iscnrm3rlem4.2
 |-  ( ph -> S C_ U. J )
3 iscnrm3rlem5.3
 |-  ( ph -> T C_ U. J )
4 eqid
 |-  U. J = U. J
5 4 clscld
 |-  ( ( J e. Top /\ S C_ U. J ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) )
6 1 2 5 syl2anc
 |-  ( ph -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) )
7 4 clscld
 |-  ( ( J e. Top /\ T C_ U. J ) -> ( ( cls ` J ) ` T ) e. ( Clsd ` J ) )
8 1 3 7 syl2anc
 |-  ( ph -> ( ( cls ` J ) ` T ) e. ( Clsd ` J ) )
9 incld
 |-  ( ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) /\ ( ( cls ` J ) ` T ) e. ( Clsd ` J ) ) -> ( ( ( cls ` J ) ` S ) i^i ( ( cls ` J ) ` T ) ) e. ( Clsd ` J ) )
10 6 8 9 syl2anc
 |-  ( ph -> ( ( ( cls ` J ) ` S ) i^i ( ( cls ` J ) ` T ) ) e. ( Clsd ` J ) )
11 4 cldopn
 |-  ( ( ( ( cls ` J ) ` S ) i^i ( ( cls ` J ) ` T ) ) e. ( Clsd ` J ) -> ( U. J \ ( ( ( cls ` J ) ` S ) i^i ( ( cls ` J ) ` T ) ) ) e. J )
12 10 11 syl
 |-  ( ph -> ( U. J \ ( ( ( cls ` J ) ` S ) i^i ( ( cls ` J ) ` T ) ) ) e. J )