| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscnrm3rlem4.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 2 |
|
iscnrm3rlem4.2 |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 3 |
|
iscnrm3rlem5.3 |
⊢ ( 𝜑 → 𝑇 ⊆ ∪ 𝐽 ) |
| 4 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 5 |
4
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 7 |
4
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 |
1 3 7
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 |
|
incld |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 10 |
6 8 9
|
syl2anc |
⊢ ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 11 |
4
|
cldopn |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ∈ 𝐽 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ∈ 𝐽 ) |