Metamath Proof Explorer


Theorem iscnrm3rlem5

Description: Lemma for iscnrm3rlem6 . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypotheses iscnrm3rlem4.1 ( 𝜑𝐽 ∈ Top )
iscnrm3rlem4.2 ( 𝜑𝑆 𝐽 )
iscnrm3rlem5.3 ( 𝜑𝑇 𝐽 )
Assertion iscnrm3rlem5 ( 𝜑 → ( 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 iscnrm3rlem4.1 ( 𝜑𝐽 ∈ Top )
2 iscnrm3rlem4.2 ( 𝜑𝑆 𝐽 )
3 iscnrm3rlem5.3 ( 𝜑𝑇 𝐽 )
4 eqid 𝐽 = 𝐽
5 4 clscld ( ( 𝐽 ∈ Top ∧ 𝑆 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) )
6 1 2 5 syl2anc ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) )
7 4 clscld ( ( 𝐽 ∈ Top ∧ 𝑇 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∈ ( Clsd ‘ 𝐽 ) )
8 1 3 7 syl2anc ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∈ ( Clsd ‘ 𝐽 ) )
9 incld ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ∈ ( Clsd ‘ 𝐽 ) )
10 6 8 9 syl2anc ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ∈ ( Clsd ‘ 𝐽 ) )
11 4 cldopn ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ∈ 𝐽 )
12 10 11 syl ( 𝜑 → ( 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ∈ 𝐽 )