| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscnrm3rlem4.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 2 |
|
iscnrm3rlem4.2 |
⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 3 |
|
iscnrm3rlem5.3 |
⊢ ( 𝜑 → 𝑇 ⊆ ∪ 𝐽 ) |
| 4 |
|
iscnrm3rlem6.4 |
⊢ ( 𝜑 → 𝑂 ⊆ ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ) |
| 5 |
1 2 3
|
iscnrm3rlem5 |
⊢ ( 𝜑 → ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ∈ 𝐽 ) |
| 6 |
|
restopn2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ∈ 𝐽 ) → ( 𝑂 ∈ ( 𝐽 ↾t ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ) ↔ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ) ) ) |
| 7 |
1 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ∈ ( 𝐽 ↾t ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ) ↔ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ) ) ) |
| 8 |
4 7
|
mpbiran2d |
⊢ ( 𝜑 → ( 𝑂 ∈ ( 𝐽 ↾t ( ∪ 𝐽 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ) ) ) ↔ 𝑂 ∈ 𝐽 ) ) |