| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscvsp.t |  |-  .x. = ( .s ` W ) | 
						
							| 2 |  | iscvsp.a |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | iscvsp.v |  |-  V = ( Base ` W ) | 
						
							| 4 |  | iscvsp.s |  |-  S = ( Scalar ` W ) | 
						
							| 5 |  | iscvsp.k |  |-  K = ( Base ` S ) | 
						
							| 6 |  | iscvs |  |-  ( W e. CVec <-> ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) ) | 
						
							| 7 | 1 2 3 4 5 | isclmp |  |-  ( W e. CMod <-> ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) | 
						
							| 8 | 7 | anbi2ci |  |-  ( ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) <-> ( ( Scalar ` W ) e. DivRing /\ ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) ) | 
						
							| 9 |  | anass |  |-  ( ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) ) | 
						
							| 10 |  | 3anan12 |  |-  ( ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) <-> ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 11 | 10 | anbi2i |  |-  ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) ) | 
						
							| 12 |  | anass |  |-  ( ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( Scalar ` W ) e. DivRing /\ ( S = ( CCfld |`s K ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) ) | 
						
							| 13 | 4 | eqcomi |  |-  ( Scalar ` W ) = S | 
						
							| 14 | 13 | eleq1i |  |-  ( ( Scalar ` W ) e. DivRing <-> S e. DivRing ) | 
						
							| 15 | 14 | anbi1i |  |-  ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) <-> ( S e. DivRing /\ S = ( CCfld |`s K ) ) ) | 
						
							| 16 | 15 | anbi1i |  |-  ( ( ( ( Scalar ` W ) e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 17 | 11 12 16 | 3bitr2i |  |-  ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 18 |  | 3anan12 |  |-  ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) <-> ( ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ ( W e. Grp /\ K e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 19 | 17 18 | bitr4i |  |-  ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) <-> ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) ) | 
						
							| 20 | 19 | anbi1i |  |-  ( ( ( ( Scalar ` W ) e. DivRing /\ ( W e. Grp /\ S = ( CCfld |`s K ) /\ K e. ( SubRing ` CCfld ) ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) | 
						
							| 21 | 8 9 20 | 3bitr2i |  |-  ( ( W e. CMod /\ ( Scalar ` W ) e. DivRing ) <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) | 
						
							| 22 | 6 21 | bitri |  |-  ( W e. CVec <-> ( ( W e. Grp /\ ( S e. DivRing /\ S = ( CCfld |`s K ) ) /\ K e. ( SubRing ` CCfld ) ) /\ A. x e. V ( ( 1 .x. x ) = x /\ A. y e. K ( ( y .x. x ) e. V /\ A. z e. V ( y .x. ( x .+ z ) ) = ( ( y .x. x ) .+ ( y .x. z ) ) /\ A. z e. K ( ( ( z + y ) .x. x ) = ( ( z .x. x ) .+ ( y .x. x ) ) /\ ( ( z x. y ) .x. x ) = ( z .x. ( y .x. x ) ) ) ) ) ) ) |