| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dilset.a |
|- A = ( Atoms ` K ) |
| 2 |
|
dilset.s |
|- S = ( PSubSp ` K ) |
| 3 |
|
dilset.w |
|- W = ( WAtoms ` K ) |
| 4 |
|
dilset.m |
|- M = ( PAut ` K ) |
| 5 |
|
dilset.l |
|- L = ( Dil ` K ) |
| 6 |
1 2 3 4 5
|
dilsetN |
|- ( ( K e. B /\ D e. A ) -> ( L ` D ) = { f e. M | A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) } ) |
| 7 |
6
|
eleq2d |
|- ( ( K e. B /\ D e. A ) -> ( F e. ( L ` D ) <-> F e. { f e. M | A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) } ) ) |
| 8 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
| 9 |
8
|
eqeq1d |
|- ( f = F -> ( ( f ` x ) = x <-> ( F ` x ) = x ) ) |
| 10 |
9
|
imbi2d |
|- ( f = F -> ( ( x C_ ( W ` D ) -> ( f ` x ) = x ) <-> ( x C_ ( W ` D ) -> ( F ` x ) = x ) ) ) |
| 11 |
10
|
ralbidv |
|- ( f = F -> ( A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) <-> A. x e. S ( x C_ ( W ` D ) -> ( F ` x ) = x ) ) ) |
| 12 |
11
|
elrab |
|- ( F e. { f e. M | A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) } <-> ( F e. M /\ A. x e. S ( x C_ ( W ` D ) -> ( F ` x ) = x ) ) ) |
| 13 |
7 12
|
bitrdi |
|- ( ( K e. B /\ D e. A ) -> ( F e. ( L ` D ) <-> ( F e. M /\ A. x e. S ( x C_ ( W ` D ) -> ( F ` x ) = x ) ) ) ) |