Metamath Proof Explorer


Theorem isdilN

Description: The predicate "is a dilation". (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses dilset.a 𝐴 = ( Atoms ‘ 𝐾 )
dilset.s 𝑆 = ( PSubSp ‘ 𝐾 )
dilset.w 𝑊 = ( WAtoms ‘ 𝐾 )
dilset.m 𝑀 = ( PAut ‘ 𝐾 )
dilset.l 𝐿 = ( Dil ‘ 𝐾 )
Assertion isdilN ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝐹 ∈ ( 𝐿𝐷 ) ↔ ( 𝐹𝑀 ∧ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝐹𝑥 ) = 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 dilset.a 𝐴 = ( Atoms ‘ 𝐾 )
2 dilset.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 dilset.w 𝑊 = ( WAtoms ‘ 𝐾 )
4 dilset.m 𝑀 = ( PAut ‘ 𝐾 )
5 dilset.l 𝐿 = ( Dil ‘ 𝐾 )
6 1 2 3 4 5 dilsetN ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝐿𝐷 ) = { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } )
7 6 eleq2d ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝐹 ∈ ( 𝐿𝐷 ) ↔ 𝐹 ∈ { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) )
8 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
9 8 eqeq1d ( 𝑓 = 𝐹 → ( ( 𝑓𝑥 ) = 𝑥 ↔ ( 𝐹𝑥 ) = 𝑥 ) )
10 9 imbi2d ( 𝑓 = 𝐹 → ( ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) ↔ ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝐹𝑥 ) = 𝑥 ) ) )
11 10 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) ↔ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝐹𝑥 ) = 𝑥 ) ) )
12 11 elrab ( 𝐹 ∈ { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } ↔ ( 𝐹𝑀 ∧ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝐹𝑥 ) = 𝑥 ) ) )
13 7 12 bitrdi ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝐹 ∈ ( 𝐿𝐷 ) ↔ ( 𝐹𝑀 ∧ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝐹𝑥 ) = 𝑥 ) ) ) )