| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dilset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
dilset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
| 3 |
|
dilset.w |
⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) |
| 4 |
|
dilset.m |
⊢ 𝑀 = ( PAut ‘ 𝐾 ) |
| 5 |
|
dilset.l |
⊢ 𝐿 = ( Dil ‘ 𝐾 ) |
| 6 |
1 2 3 4 5
|
dilfsetN |
⊢ ( 𝐾 ∈ 𝐵 → 𝐿 = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝐾 ∈ 𝐵 → ( 𝐿 ‘ 𝐷 ) = ( ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ‘ 𝐷 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑊 ‘ 𝑑 ) = ( 𝑊 ‘ 𝐷 ) ) |
| 9 |
8
|
sseq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) ↔ 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) ) ) |
| 10 |
9
|
imbi1d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ) ) |
| 12 |
11
|
rabbidv |
⊢ ( 𝑑 = 𝐷 → { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } = { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
| 13 |
|
eqid |
⊢ ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
| 14 |
4
|
fvexi |
⊢ 𝑀 ∈ V |
| 15 |
14
|
rabex |
⊢ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ∈ V |
| 16 |
12 13 15
|
fvmpt |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ‘ 𝐷 ) = { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
| 17 |
7 16
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐿 ‘ 𝐷 ) = { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |