Metamath Proof Explorer


Theorem dilsetN

Description: The set of dilations for a fiducial atom D . (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses dilset.a A=AtomsK
dilset.s S=PSubSpK
dilset.w W=WAtomsK
dilset.m M=PAutK
dilset.l L=DilK
Assertion dilsetN KBDALD=fM|xSxWDfx=x

Proof

Step Hyp Ref Expression
1 dilset.a A=AtomsK
2 dilset.s S=PSubSpK
3 dilset.w W=WAtomsK
4 dilset.m M=PAutK
5 dilset.l L=DilK
6 1 2 3 4 5 dilfsetN KBL=dAfM|xSxWdfx=x
7 6 fveq1d KBLD=dAfM|xSxWdfx=xD
8 fveq2 d=DWd=WD
9 8 sseq2d d=DxWdxWD
10 9 imbi1d d=DxWdfx=xxWDfx=x
11 10 ralbidv d=DxSxWdfx=xxSxWDfx=x
12 11 rabbidv d=DfM|xSxWdfx=x=fM|xSxWDfx=x
13 eqid dAfM|xSxWdfx=x=dAfM|xSxWdfx=x
14 4 fvexi MV
15 14 rabex fM|xSxWDfx=xV
16 12 13 15 fvmpt DAdAfM|xSxWdfx=xD=fM|xSxWDfx=x
17 7 16 sylan9eq KBDALD=fM|xSxWDfx=x