Metamath Proof Explorer


Theorem islln2

Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses islln3.b
|- B = ( Base ` K )
islln3.j
|- .\/ = ( join ` K )
islln3.a
|- A = ( Atoms ` K )
islln3.n
|- N = ( LLines ` K )
Assertion islln2
|- ( K e. HL -> ( X e. N <-> ( X e. B /\ E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) )

Proof

Step Hyp Ref Expression
1 islln3.b
 |-  B = ( Base ` K )
2 islln3.j
 |-  .\/ = ( join ` K )
3 islln3.a
 |-  A = ( Atoms ` K )
4 islln3.n
 |-  N = ( LLines ` K )
5 1 4 llnbase
 |-  ( X e. N -> X e. B )
6 5 pm4.71ri
 |-  ( X e. N <-> ( X e. B /\ X e. N ) )
7 1 2 3 4 islln3
 |-  ( ( K e. HL /\ X e. B ) -> ( X e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) )
8 7 pm5.32da
 |-  ( K e. HL -> ( ( X e. B /\ X e. N ) <-> ( X e. B /\ E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) )
9 6 8 syl5bb
 |-  ( K e. HL -> ( X e. N <-> ( X e. B /\ E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) )