Metamath Proof Explorer


Theorem islln2

Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses islln3.b B=BaseK
islln3.j ˙=joinK
islln3.a A=AtomsK
islln3.n N=LLinesK
Assertion islln2 KHLXNXBpAqApqX=p˙q

Proof

Step Hyp Ref Expression
1 islln3.b B=BaseK
2 islln3.j ˙=joinK
3 islln3.a A=AtomsK
4 islln3.n N=LLinesK
5 1 4 llnbase XNXB
6 5 pm4.71ri XNXBXN
7 1 2 3 4 islln3 KHLXBXNpAqApqX=p˙q
8 7 pm5.32da KHLXBXNXBpAqApqX=p˙q
9 6 8 bitrid KHLXNXBpAqApqX=p˙q