Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. NN0 /\ J e. V ) -> N e. NN0 ) |
2 |
|
simpl |
|- ( ( n = N /\ j = J ) -> n = N ) |
3 |
2
|
eleq1d |
|- ( ( n = N /\ j = J ) -> ( n e. NN0 <-> N e. NN0 ) ) |
4 |
|
simpr |
|- ( ( n = N /\ j = J ) -> j = J ) |
5 |
4
|
eleq1d |
|- ( ( n = N /\ j = J ) -> ( j e. 2ndc <-> J e. 2ndc ) ) |
6 |
4
|
eleq1d |
|- ( ( n = N /\ j = J ) -> ( j e. Haus <-> J e. Haus ) ) |
7 |
|
2fveq3 |
|- ( n = N -> ( TopOpen ` ( EEhil ` n ) ) = ( TopOpen ` ( EEhil ` N ) ) ) |
8 |
7
|
eceq1d |
|- ( n = N -> [ ( TopOpen ` ( EEhil ` n ) ) ] ~= = [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) |
9 |
|
llyeq |
|- ( [ ( TopOpen ` ( EEhil ` n ) ) ] ~= = [ ( TopOpen ` ( EEhil ` N ) ) ] ~= -> Locally [ ( TopOpen ` ( EEhil ` n ) ) ] ~= = Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) |
10 |
8 9
|
syl |
|- ( n = N -> Locally [ ( TopOpen ` ( EEhil ` n ) ) ] ~= = Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) |
11 |
10
|
adantr |
|- ( ( n = N /\ j = J ) -> Locally [ ( TopOpen ` ( EEhil ` n ) ) ] ~= = Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) |
12 |
4 11
|
eleq12d |
|- ( ( n = N /\ j = J ) -> ( j e. Locally [ ( TopOpen ` ( EEhil ` n ) ) ] ~= <-> J e. Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) ) |
13 |
5 6 12
|
3anbi123d |
|- ( ( n = N /\ j = J ) -> ( ( j e. 2ndc /\ j e. Haus /\ j e. Locally [ ( TopOpen ` ( EEhil ` n ) ) ] ~= ) <-> ( J e. 2ndc /\ J e. Haus /\ J e. Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) ) ) |
14 |
3 13
|
anbi12d |
|- ( ( n = N /\ j = J ) -> ( ( n e. NN0 /\ ( j e. 2ndc /\ j e. Haus /\ j e. Locally [ ( TopOpen ` ( EEhil ` n ) ) ] ~= ) ) <-> ( N e. NN0 /\ ( J e. 2ndc /\ J e. Haus /\ J e. Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) ) ) ) |
15 |
|
df-mntop |
|- ManTop = { <. n , j >. | ( n e. NN0 /\ ( j e. 2ndc /\ j e. Haus /\ j e. Locally [ ( TopOpen ` ( EEhil ` n ) ) ] ~= ) ) } |
16 |
14 15
|
brabga |
|- ( ( N e. NN0 /\ J e. V ) -> ( N ManTop J <-> ( N e. NN0 /\ ( J e. 2ndc /\ J e. Haus /\ J e. Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) ) ) ) |
17 |
1 16
|
mpbirand |
|- ( ( N e. NN0 /\ J e. V ) -> ( N ManTop J <-> ( J e. 2ndc /\ J e. Haus /\ J e. Locally [ ( TopOpen ` ( EEhil ` N ) ) ] ~= ) ) ) |