Metamath Proof Explorer


Theorem ismntoplly

Description: Property of being a manifold. (Contributed by Thierry Arnoux, 28-Dec-2019)

Ref Expression
Assertion ismntoplly N 0 J V N ManTop J J 2 nd 𝜔 J Haus J Locally TopOpen 𝔼 hil N

Proof

Step Hyp Ref Expression
1 simpl N 0 J V N 0
2 simpl n = N j = J n = N
3 2 eleq1d n = N j = J n 0 N 0
4 simpr n = N j = J j = J
5 4 eleq1d n = N j = J j 2 nd 𝜔 J 2 nd 𝜔
6 4 eleq1d n = N j = J j Haus J Haus
7 2fveq3 n = N TopOpen 𝔼 hil n = TopOpen 𝔼 hil N
8 7 eceq1d n = N TopOpen 𝔼 hil n = TopOpen 𝔼 hil N
9 llyeq TopOpen 𝔼 hil n = TopOpen 𝔼 hil N Locally TopOpen 𝔼 hil n = Locally TopOpen 𝔼 hil N
10 8 9 syl n = N Locally TopOpen 𝔼 hil n = Locally TopOpen 𝔼 hil N
11 10 adantr n = N j = J Locally TopOpen 𝔼 hil n = Locally TopOpen 𝔼 hil N
12 4 11 eleq12d n = N j = J j Locally TopOpen 𝔼 hil n J Locally TopOpen 𝔼 hil N
13 5 6 12 3anbi123d n = N j = J j 2 nd 𝜔 j Haus j Locally TopOpen 𝔼 hil n J 2 nd 𝜔 J Haus J Locally TopOpen 𝔼 hil N
14 3 13 anbi12d n = N j = J n 0 j 2 nd 𝜔 j Haus j Locally TopOpen 𝔼 hil n N 0 J 2 nd 𝜔 J Haus J Locally TopOpen 𝔼 hil N
15 df-mntop ManTop = n j | n 0 j 2 nd 𝜔 j Haus j Locally TopOpen 𝔼 hil n
16 14 15 brabga N 0 J V N ManTop J N 0 J 2 nd 𝜔 J Haus J Locally TopOpen 𝔼 hil N
17 1 16 mpbirand N 0 J V N ManTop J J 2 nd 𝜔 J Haus J Locally TopOpen 𝔼 hil N