Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology and algebraic structures
Topological Manifolds
ismntoplly
Next ⟩
ismntop
Metamath Proof Explorer
Ascii
Unicode
Theorem
ismntoplly
Description:
Property of being a manifold.
(Contributed by
Thierry Arnoux
, 28-Dec-2019)
Ref
Expression
Assertion
ismntoplly
⊢
N
∈
ℕ
0
∧
J
∈
V
→
N
ManTop
J
↔
J
∈
2
nd
𝜔
∧
J
∈
Haus
∧
J
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
N
∈
ℕ
0
∧
J
∈
V
→
N
∈
ℕ
0
2
simpl
⊢
n
=
N
∧
j
=
J
→
n
=
N
3
2
eleq1d
⊢
n
=
N
∧
j
=
J
→
n
∈
ℕ
0
↔
N
∈
ℕ
0
4
simpr
⊢
n
=
N
∧
j
=
J
→
j
=
J
5
4
eleq1d
⊢
n
=
N
∧
j
=
J
→
j
∈
2
nd
𝜔
↔
J
∈
2
nd
𝜔
6
4
eleq1d
⊢
n
=
N
∧
j
=
J
→
j
∈
Haus
↔
J
∈
Haus
7
2fveq3
⊢
n
=
N
→
TopOpen
⁡
𝔼
hil
⁡
n
=
TopOpen
⁡
𝔼
hil
⁡
N
8
7
eceq1d
⊢
n
=
N
→
TopOpen
⁡
𝔼
hil
⁡
n
≃
=
TopOpen
⁡
𝔼
hil
⁡
N
≃
9
llyeq
⊢
TopOpen
⁡
𝔼
hil
⁡
n
≃
=
TopOpen
⁡
𝔼
hil
⁡
N
≃
→
Locally
TopOpen
⁡
𝔼
hil
⁡
n
≃
=
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
10
8
9
syl
⊢
n
=
N
→
Locally
TopOpen
⁡
𝔼
hil
⁡
n
≃
=
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
11
10
adantr
⊢
n
=
N
∧
j
=
J
→
Locally
TopOpen
⁡
𝔼
hil
⁡
n
≃
=
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
12
4
11
eleq12d
⊢
n
=
N
∧
j
=
J
→
j
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
n
≃
↔
J
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
13
5
6
12
3anbi123d
⊢
n
=
N
∧
j
=
J
→
j
∈
2
nd
𝜔
∧
j
∈
Haus
∧
j
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
n
≃
↔
J
∈
2
nd
𝜔
∧
J
∈
Haus
∧
J
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
14
3
13
anbi12d
⊢
n
=
N
∧
j
=
J
→
n
∈
ℕ
0
∧
j
∈
2
nd
𝜔
∧
j
∈
Haus
∧
j
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
n
≃
↔
N
∈
ℕ
0
∧
J
∈
2
nd
𝜔
∧
J
∈
Haus
∧
J
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
15
df-mntop
⊢
ManTop
=
n
j
|
n
∈
ℕ
0
∧
j
∈
2
nd
𝜔
∧
j
∈
Haus
∧
j
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
n
≃
16
14
15
brabga
⊢
N
∈
ℕ
0
∧
J
∈
V
→
N
ManTop
J
↔
N
∈
ℕ
0
∧
J
∈
2
nd
𝜔
∧
J
∈
Haus
∧
J
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃
17
1
16
mpbirand
⊢
N
∈
ℕ
0
∧
J
∈
V
→
N
ManTop
J
↔
J
∈
2
nd
𝜔
∧
J
∈
Haus
∧
J
∈
Locally
TopOpen
⁡
𝔼
hil
⁡
N
≃