Description: The empty set is an R , S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iso0 | |- (/) Isom R , S ( (/) , (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1o0 | |- (/) : (/) -1-1-onto-> (/) |
|
2 | ral0 | |- A. x e. (/) A. y e. (/) ( x R y <-> ( (/) ` x ) S ( (/) ` y ) ) |
|
3 | df-isom | |- ( (/) Isom R , S ( (/) , (/) ) <-> ( (/) : (/) -1-1-onto-> (/) /\ A. x e. (/) A. y e. (/) ( x R y <-> ( (/) ` x ) S ( (/) ` y ) ) ) ) |
|
4 | 1 2 3 | mpbir2an | |- (/) Isom R , S ( (/) , (/) ) |