Metamath Proof Explorer


Theorem iso0

Description: The empty set is an R , S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015)

Ref Expression
Assertion iso0
|- (/) Isom R , S ( (/) , (/) )

Proof

Step Hyp Ref Expression
1 f1o0
 |-  (/) : (/) -1-1-onto-> (/)
2 ral0
 |-  A. x e. (/) A. y e. (/) ( x R y <-> ( (/) ` x ) S ( (/) ` y ) )
3 df-isom
 |-  ( (/) Isom R , S ( (/) , (/) ) <-> ( (/) : (/) -1-1-onto-> (/) /\ A. x e. (/) A. y e. (/) ( x R y <-> ( (/) ` x ) S ( (/) ` y ) ) ) )
4 1 2 3 mpbir2an
 |-  (/) Isom R , S ( (/) , (/) )