Description: The empty set is an R , S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iso0 | |- (/) Isom R , S ( (/) , (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1o0 | |- (/) : (/) -1-1-onto-> (/) | |
| 2 | ral0 | |- A. x e. (/) A. y e. (/) ( x R y <-> ( (/) ` x ) S ( (/) ` y ) ) | |
| 3 | df-isom | |- ( (/) Isom R , S ( (/) , (/) ) <-> ( (/) : (/) -1-1-onto-> (/) /\ A. x e. (/) A. y e. (/) ( x R y <-> ( (/) ` x ) S ( (/) ` y ) ) ) ) | |
| 4 | 1 2 3 | mpbir2an | |- (/) Isom R , S ( (/) , (/) ) |