Description: RR is a subset of both RR and CC . (Contributed by Steve Rodriguez, 22-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrecnpr | |- ( S e. { RR , CC } -> RR C_ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 2 | eqimss2 | |- ( S = RR -> RR C_ S ) |
|
| 3 | ax-resscn | |- RR C_ CC |
|
| 4 | sseq2 | |- ( S = CC -> ( RR C_ S <-> RR C_ CC ) ) |
|
| 5 | 3 4 | mpbiri | |- ( S = CC -> RR C_ S ) |
| 6 | 2 5 | jaoi | |- ( ( S = RR \/ S = CC ) -> RR C_ S ) |
| 7 | 1 6 | syl | |- ( S e. { RR , CC } -> RR C_ S ) |