Description: RR is a subset of both RR and CC . (Contributed by Steve Rodriguez, 22-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrecnpr | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ℝ ⊆ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) | |
| 2 | eqimss2 | ⊢ ( 𝑆 = ℝ → ℝ ⊆ 𝑆 ) | |
| 3 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 4 | sseq2 | ⊢ ( 𝑆 = ℂ → ( ℝ ⊆ 𝑆 ↔ ℝ ⊆ ℂ ) ) | |
| 5 | 3 4 | mpbiri | ⊢ ( 𝑆 = ℂ → ℝ ⊆ 𝑆 ) |
| 6 | 2 5 | jaoi | ⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → ℝ ⊆ 𝑆 ) |
| 7 | 1 6 | syl | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ℝ ⊆ 𝑆 ) |