Metamath Proof Explorer


Theorem ssrecnpr

Description: RR is a subset of both RR and CC . (Contributed by Steve Rodriguez, 22-Nov-2015)

Ref Expression
Assertion ssrecnpr ( 𝑆 ∈ { ℝ , ℂ } → ℝ ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 elpri ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) )
2 eqimss2 ( 𝑆 = ℝ → ℝ ⊆ 𝑆 )
3 ax-resscn ℝ ⊆ ℂ
4 sseq2 ( 𝑆 = ℂ → ( ℝ ⊆ 𝑆 ↔ ℝ ⊆ ℂ ) )
5 3 4 mpbiri ( 𝑆 = ℂ → ℝ ⊆ 𝑆 )
6 2 5 jaoi ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → ℝ ⊆ 𝑆 )
7 1 6 syl ( 𝑆 ∈ { ℝ , ℂ } → ℝ ⊆ 𝑆 )