| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seff.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 3 |
|
reeff1 |
⊢ ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ |
| 4 |
|
f1f |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) |
| 5 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 6 |
|
fss |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ℝ+ ⊆ ℝ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) |
| 7 |
5 6
|
mpan2 |
⊢ ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) |
| 8 |
3 4 7
|
mp2b |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ |
| 9 |
|
feq23 |
⊢ ( ( 𝑆 = ℝ ∧ 𝑆 = ℝ ) → ( ( exp ↾ ℝ ) : 𝑆 ⟶ 𝑆 ↔ ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) ) |
| 10 |
9
|
anidms |
⊢ ( 𝑆 = ℝ → ( ( exp ↾ ℝ ) : 𝑆 ⟶ 𝑆 ↔ ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) ) |
| 11 |
8 10
|
mpbiri |
⊢ ( 𝑆 = ℝ → ( exp ↾ ℝ ) : 𝑆 ⟶ 𝑆 ) |
| 12 |
|
reseq2 |
⊢ ( 𝑆 = ℝ → ( exp ↾ 𝑆 ) = ( exp ↾ ℝ ) ) |
| 13 |
12
|
feq1d |
⊢ ( 𝑆 = ℝ → ( ( exp ↾ 𝑆 ) : 𝑆 ⟶ 𝑆 ↔ ( exp ↾ ℝ ) : 𝑆 ⟶ 𝑆 ) ) |
| 14 |
11 13
|
mpbird |
⊢ ( 𝑆 = ℝ → ( exp ↾ 𝑆 ) : 𝑆 ⟶ 𝑆 ) |
| 15 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 16 |
|
frel |
⊢ ( exp : ℂ ⟶ ℂ → Rel exp ) |
| 17 |
|
resdm |
⊢ ( Rel exp → ( exp ↾ dom exp ) = exp ) |
| 18 |
15 16 17
|
mp2b |
⊢ ( exp ↾ dom exp ) = exp |
| 19 |
15
|
fdmi |
⊢ dom exp = ℂ |
| 20 |
19
|
reseq2i |
⊢ ( exp ↾ dom exp ) = ( exp ↾ ℂ ) |
| 21 |
18 20
|
eqtr3i |
⊢ exp = ( exp ↾ ℂ ) |
| 22 |
21
|
feq1i |
⊢ ( exp : ℂ ⟶ ℂ ↔ ( exp ↾ ℂ ) : ℂ ⟶ ℂ ) |
| 23 |
15 22
|
mpbi |
⊢ ( exp ↾ ℂ ) : ℂ ⟶ ℂ |
| 24 |
|
feq23 |
⊢ ( ( 𝑆 = ℂ ∧ 𝑆 = ℂ ) → ( ( exp ↾ ℂ ) : 𝑆 ⟶ 𝑆 ↔ ( exp ↾ ℂ ) : ℂ ⟶ ℂ ) ) |
| 25 |
24
|
anidms |
⊢ ( 𝑆 = ℂ → ( ( exp ↾ ℂ ) : 𝑆 ⟶ 𝑆 ↔ ( exp ↾ ℂ ) : ℂ ⟶ ℂ ) ) |
| 26 |
23 25
|
mpbiri |
⊢ ( 𝑆 = ℂ → ( exp ↾ ℂ ) : 𝑆 ⟶ 𝑆 ) |
| 27 |
|
reseq2 |
⊢ ( 𝑆 = ℂ → ( exp ↾ 𝑆 ) = ( exp ↾ ℂ ) ) |
| 28 |
27
|
feq1d |
⊢ ( 𝑆 = ℂ → ( ( exp ↾ 𝑆 ) : 𝑆 ⟶ 𝑆 ↔ ( exp ↾ ℂ ) : 𝑆 ⟶ 𝑆 ) ) |
| 29 |
26 28
|
mpbird |
⊢ ( 𝑆 = ℂ → ( exp ↾ 𝑆 ) : 𝑆 ⟶ 𝑆 ) |
| 30 |
14 29
|
jaoi |
⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → ( exp ↾ 𝑆 ) : 𝑆 ⟶ 𝑆 ) |
| 31 |
1 2 30
|
3syl |
⊢ ( 𝜑 → ( exp ↾ 𝑆 ) : 𝑆 ⟶ 𝑆 ) |