| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seff.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
| 3 |
|
reeff1 |
|- ( exp |` RR ) : RR -1-1-> RR+ |
| 4 |
|
f1f |
|- ( ( exp |` RR ) : RR -1-1-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
| 5 |
|
rpssre |
|- RR+ C_ RR |
| 6 |
|
fss |
|- ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) |
| 7 |
5 6
|
mpan2 |
|- ( ( exp |` RR ) : RR --> RR+ -> ( exp |` RR ) : RR --> RR ) |
| 8 |
3 4 7
|
mp2b |
|- ( exp |` RR ) : RR --> RR |
| 9 |
|
feq23 |
|- ( ( S = RR /\ S = RR ) -> ( ( exp |` RR ) : S --> S <-> ( exp |` RR ) : RR --> RR ) ) |
| 10 |
9
|
anidms |
|- ( S = RR -> ( ( exp |` RR ) : S --> S <-> ( exp |` RR ) : RR --> RR ) ) |
| 11 |
8 10
|
mpbiri |
|- ( S = RR -> ( exp |` RR ) : S --> S ) |
| 12 |
|
reseq2 |
|- ( S = RR -> ( exp |` S ) = ( exp |` RR ) ) |
| 13 |
12
|
feq1d |
|- ( S = RR -> ( ( exp |` S ) : S --> S <-> ( exp |` RR ) : S --> S ) ) |
| 14 |
11 13
|
mpbird |
|- ( S = RR -> ( exp |` S ) : S --> S ) |
| 15 |
|
eff |
|- exp : CC --> CC |
| 16 |
|
frel |
|- ( exp : CC --> CC -> Rel exp ) |
| 17 |
|
resdm |
|- ( Rel exp -> ( exp |` dom exp ) = exp ) |
| 18 |
15 16 17
|
mp2b |
|- ( exp |` dom exp ) = exp |
| 19 |
15
|
fdmi |
|- dom exp = CC |
| 20 |
19
|
reseq2i |
|- ( exp |` dom exp ) = ( exp |` CC ) |
| 21 |
18 20
|
eqtr3i |
|- exp = ( exp |` CC ) |
| 22 |
21
|
feq1i |
|- ( exp : CC --> CC <-> ( exp |` CC ) : CC --> CC ) |
| 23 |
15 22
|
mpbi |
|- ( exp |` CC ) : CC --> CC |
| 24 |
|
feq23 |
|- ( ( S = CC /\ S = CC ) -> ( ( exp |` CC ) : S --> S <-> ( exp |` CC ) : CC --> CC ) ) |
| 25 |
24
|
anidms |
|- ( S = CC -> ( ( exp |` CC ) : S --> S <-> ( exp |` CC ) : CC --> CC ) ) |
| 26 |
23 25
|
mpbiri |
|- ( S = CC -> ( exp |` CC ) : S --> S ) |
| 27 |
|
reseq2 |
|- ( S = CC -> ( exp |` S ) = ( exp |` CC ) ) |
| 28 |
27
|
feq1d |
|- ( S = CC -> ( ( exp |` S ) : S --> S <-> ( exp |` CC ) : S --> S ) ) |
| 29 |
26 28
|
mpbird |
|- ( S = CC -> ( exp |` S ) : S --> S ) |
| 30 |
14 29
|
jaoi |
|- ( ( S = RR \/ S = CC ) -> ( exp |` S ) : S --> S ) |
| 31 |
1 2 30
|
3syl |
|- ( ph -> ( exp |` S ) : S --> S ) |