Step |
Hyp |
Ref |
Expression |
1 |
|
seff.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
3 |
|
reeff1 |
|- ( exp |` RR ) : RR -1-1-> RR+ |
4 |
|
f1f |
|- ( ( exp |` RR ) : RR -1-1-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
5 |
|
rpssre |
|- RR+ C_ RR |
6 |
|
fss |
|- ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) |
7 |
5 6
|
mpan2 |
|- ( ( exp |` RR ) : RR --> RR+ -> ( exp |` RR ) : RR --> RR ) |
8 |
3 4 7
|
mp2b |
|- ( exp |` RR ) : RR --> RR |
9 |
|
feq23 |
|- ( ( S = RR /\ S = RR ) -> ( ( exp |` RR ) : S --> S <-> ( exp |` RR ) : RR --> RR ) ) |
10 |
9
|
anidms |
|- ( S = RR -> ( ( exp |` RR ) : S --> S <-> ( exp |` RR ) : RR --> RR ) ) |
11 |
8 10
|
mpbiri |
|- ( S = RR -> ( exp |` RR ) : S --> S ) |
12 |
|
reseq2 |
|- ( S = RR -> ( exp |` S ) = ( exp |` RR ) ) |
13 |
12
|
feq1d |
|- ( S = RR -> ( ( exp |` S ) : S --> S <-> ( exp |` RR ) : S --> S ) ) |
14 |
11 13
|
mpbird |
|- ( S = RR -> ( exp |` S ) : S --> S ) |
15 |
|
eff |
|- exp : CC --> CC |
16 |
|
frel |
|- ( exp : CC --> CC -> Rel exp ) |
17 |
|
resdm |
|- ( Rel exp -> ( exp |` dom exp ) = exp ) |
18 |
15 16 17
|
mp2b |
|- ( exp |` dom exp ) = exp |
19 |
15
|
fdmi |
|- dom exp = CC |
20 |
19
|
reseq2i |
|- ( exp |` dom exp ) = ( exp |` CC ) |
21 |
18 20
|
eqtr3i |
|- exp = ( exp |` CC ) |
22 |
21
|
feq1i |
|- ( exp : CC --> CC <-> ( exp |` CC ) : CC --> CC ) |
23 |
15 22
|
mpbi |
|- ( exp |` CC ) : CC --> CC |
24 |
|
feq23 |
|- ( ( S = CC /\ S = CC ) -> ( ( exp |` CC ) : S --> S <-> ( exp |` CC ) : CC --> CC ) ) |
25 |
24
|
anidms |
|- ( S = CC -> ( ( exp |` CC ) : S --> S <-> ( exp |` CC ) : CC --> CC ) ) |
26 |
23 25
|
mpbiri |
|- ( S = CC -> ( exp |` CC ) : S --> S ) |
27 |
|
reseq2 |
|- ( S = CC -> ( exp |` S ) = ( exp |` CC ) ) |
28 |
27
|
feq1d |
|- ( S = CC -> ( ( exp |` S ) : S --> S <-> ( exp |` CC ) : S --> S ) ) |
29 |
26 28
|
mpbird |
|- ( S = CC -> ( exp |` S ) : S --> S ) |
30 |
14 29
|
jaoi |
|- ( ( S = RR \/ S = CC ) -> ( exp |` S ) : S --> S ) |
31 |
1 2 30
|
3syl |
|- ( ph -> ( exp |` S ) : S --> S ) |