| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sblpnf.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
sblpnf.d |
|- D = ( ( abs o. - ) |` ( S X. S ) ) |
| 3 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
| 4 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 5 |
4
|
remet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
| 6 |
|
xpeq12 |
|- ( ( S = RR /\ S = RR ) -> ( S X. S ) = ( RR X. RR ) ) |
| 7 |
6
|
anidms |
|- ( S = RR -> ( S X. S ) = ( RR X. RR ) ) |
| 8 |
7
|
reseq2d |
|- ( S = RR -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 9 |
|
fveq2 |
|- ( S = RR -> ( Met ` S ) = ( Met ` RR ) ) |
| 10 |
8 9
|
eleq12d |
|- ( S = RR -> ( ( ( abs o. - ) |` ( S X. S ) ) e. ( Met ` S ) <-> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) ) ) |
| 11 |
5 10
|
mpbiri |
|- ( S = RR -> ( ( abs o. - ) |` ( S X. S ) ) e. ( Met ` S ) ) |
| 12 |
2 11
|
eqeltrid |
|- ( S = RR -> D e. ( Met ` S ) ) |
| 13 |
|
relco |
|- Rel ( abs o. - ) |
| 14 |
|
resdm |
|- ( Rel ( abs o. - ) -> ( ( abs o. - ) |` dom ( abs o. - ) ) = ( abs o. - ) ) |
| 15 |
13 14
|
ax-mp |
|- ( ( abs o. - ) |` dom ( abs o. - ) ) = ( abs o. - ) |
| 16 |
|
absf |
|- abs : CC --> RR |
| 17 |
|
ax-resscn |
|- RR C_ CC |
| 18 |
|
fss |
|- ( ( abs : CC --> RR /\ RR C_ CC ) -> abs : CC --> CC ) |
| 19 |
16 17 18
|
mp2an |
|- abs : CC --> CC |
| 20 |
|
subf |
|- - : ( CC X. CC ) --> CC |
| 21 |
|
fco |
|- ( ( abs : CC --> CC /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> CC ) |
| 22 |
19 20 21
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> CC |
| 23 |
22
|
fdmi |
|- dom ( abs o. - ) = ( CC X. CC ) |
| 24 |
23
|
reseq2i |
|- ( ( abs o. - ) |` dom ( abs o. - ) ) = ( ( abs o. - ) |` ( CC X. CC ) ) |
| 25 |
15 24
|
eqtr3i |
|- ( abs o. - ) = ( ( abs o. - ) |` ( CC X. CC ) ) |
| 26 |
|
cnmet |
|- ( abs o. - ) e. ( Met ` CC ) |
| 27 |
25 26
|
eqeltrri |
|- ( ( abs o. - ) |` ( CC X. CC ) ) e. ( Met ` CC ) |
| 28 |
|
xpeq12 |
|- ( ( S = CC /\ S = CC ) -> ( S X. S ) = ( CC X. CC ) ) |
| 29 |
28
|
anidms |
|- ( S = CC -> ( S X. S ) = ( CC X. CC ) ) |
| 30 |
29
|
reseq2d |
|- ( S = CC -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( CC X. CC ) ) ) |
| 31 |
|
fveq2 |
|- ( S = CC -> ( Met ` S ) = ( Met ` CC ) ) |
| 32 |
30 31
|
eleq12d |
|- ( S = CC -> ( ( ( abs o. - ) |` ( S X. S ) ) e. ( Met ` S ) <-> ( ( abs o. - ) |` ( CC X. CC ) ) e. ( Met ` CC ) ) ) |
| 33 |
27 32
|
mpbiri |
|- ( S = CC -> ( ( abs o. - ) |` ( S X. S ) ) e. ( Met ` S ) ) |
| 34 |
2 33
|
eqeltrid |
|- ( S = CC -> D e. ( Met ` S ) ) |
| 35 |
12 34
|
jaoi |
|- ( ( S = RR \/ S = CC ) -> D e. ( Met ` S ) ) |
| 36 |
1 3 35
|
3syl |
|- ( ph -> D e. ( Met ` S ) ) |
| 37 |
|
blpnf |
|- ( ( D e. ( Met ` S ) /\ P e. S ) -> ( P ( ball ` D ) +oo ) = S ) |
| 38 |
36 37
|
sylan |
|- ( ( ph /\ P e. S ) -> ( P ( ball ` D ) +oo ) = S ) |