Metamath Proof Explorer


Theorem prmunb2

Description: The primes are unbounded. This generalizes prmunb to real A with arch and lttrd : every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion prmunb2
|- ( A e. RR -> E. p e. Prime A < p )

Proof

Step Hyp Ref Expression
1 simplll
 |-  ( ( ( ( A e. RR /\ n e. NN ) /\ p e. Prime ) /\ ( A < n /\ n < p ) ) -> A e. RR )
2 nnre
 |-  ( n e. NN -> n e. RR )
3 2 ad3antlr
 |-  ( ( ( ( A e. RR /\ n e. NN ) /\ p e. Prime ) /\ ( A < n /\ n < p ) ) -> n e. RR )
4 prmz
 |-  ( p e. Prime -> p e. ZZ )
5 4 zred
 |-  ( p e. Prime -> p e. RR )
6 5 ad2antlr
 |-  ( ( ( ( A e. RR /\ n e. NN ) /\ p e. Prime ) /\ ( A < n /\ n < p ) ) -> p e. RR )
7 simprl
 |-  ( ( ( ( A e. RR /\ n e. NN ) /\ p e. Prime ) /\ ( A < n /\ n < p ) ) -> A < n )
8 simprr
 |-  ( ( ( ( A e. RR /\ n e. NN ) /\ p e. Prime ) /\ ( A < n /\ n < p ) ) -> n < p )
9 1 3 6 7 8 lttrd
 |-  ( ( ( ( A e. RR /\ n e. NN ) /\ p e. Prime ) /\ ( A < n /\ n < p ) ) -> A < p )
10 arch
 |-  ( A e. RR -> E. n e. NN A < n )
11 prmunb
 |-  ( n e. NN -> E. p e. Prime n < p )
12 11 rgen
 |-  A. n e. NN E. p e. Prime n < p
13 r19.29r
 |-  ( ( E. n e. NN A < n /\ A. n e. NN E. p e. Prime n < p ) -> E. n e. NN ( A < n /\ E. p e. Prime n < p ) )
14 10 12 13 sylancl
 |-  ( A e. RR -> E. n e. NN ( A < n /\ E. p e. Prime n < p ) )
15 r19.42v
 |-  ( E. p e. Prime ( A < n /\ n < p ) <-> ( A < n /\ E. p e. Prime n < p ) )
16 15 rexbii
 |-  ( E. n e. NN E. p e. Prime ( A < n /\ n < p ) <-> E. n e. NN ( A < n /\ E. p e. Prime n < p ) )
17 14 16 sylibr
 |-  ( A e. RR -> E. n e. NN E. p e. Prime ( A < n /\ n < p ) )
18 9 17 reximddv2
 |-  ( A e. RR -> E. n e. NN E. p e. Prime A < p )
19 1nn
 |-  1 e. NN
20 ne0i
 |-  ( 1 e. NN -> NN =/= (/) )
21 r19.9rzv
 |-  ( NN =/= (/) -> ( E. p e. Prime A < p <-> E. n e. NN E. p e. Prime A < p ) )
22 19 20 21 mp2b
 |-  ( E. p e. Prime A < p <-> E. n e. NN E. p e. Prime A < p )
23 18 22 sylibr
 |-  ( A e. RR -> E. p e. Prime A < p )